Combination of T2*W and FLAIR abnormalities for the prediction of parenchymal hematoma following thrombolytic therapy in 100 stroke patients.

Standard

Combination of T2*W and FLAIR abnormalities for the prediction of parenchymal hematoma following thrombolytic therapy in 100 stroke patients. / Fiehler, Jens; Siemonsen, Susanne; Thomalla, Götz; Illies, Till; Kucinski, Thomas.

in: J NEUROIMAGING, 2009.

Publikationen: SCORING: Beitrag in Fachzeitschrift/ZeitungSCORING: ZeitschriftenaufsatzForschungBegutachtung

Harvard

APA

Vancouver

Bibtex

@article{ad049badef5b4641bac339ae40d51e90,
title = "Combination of T2*W and FLAIR abnormalities for the prediction of parenchymal hematoma following thrombolytic therapy in 100 stroke patients.",
abstract = "ABSTRACT INTRODUCTION The objective of our study was to determine whether the combination of hypointense spots ({"}cerebral microbleeds,{"} CMBs) with a leukoaraiosis is associated with the risk of parenchymal hematoma (PH) after thrombolytic therapy. PATIENTS AND METHODS We analyzed magnetic resonance imaging (MRI) scans acquired within 6 hours after symptom onset from 100 ischemic stroke patients. Multiparametric MRI including a T2*-weighted (T2*w) MRI and fluid attenuated inversion recovery (FLAIR) was performed before thrombolysis in all patients. Initial T2*w imaging was rated by two independent observers for the presence of CMBs smaller than 5 mm. White matter changes were evaluated using an adapted scale of Fazekas and Schmidt. PH was defined in follow-up imaging. FINDINGS A PH was observed in seven per 100 patients. CMBs were detected by observer 1 in 22 and observer 2 in 20 patients. We found a very low sensitivity (0.14) for prediction of PH by the presence of CMBs. We found a concordant increase in the rate of PH when the periventricular hyperintensity in FLAIR was larger than a thin lining. Sensitivity was good-to-perfect (0.86 and 1.00, observers 1 and 2) and specificity was substantial (0.65 and 0.66). Using the combination of a periventricular matter lesion (PVML)>1 and the presence of CMBs did not improve the prediction of PH. DISCUSSION A marked periventricular hyperintensity in FLAIR imaging seems to be associated with a substantially increased risk of PH. A combination of CMBs with leukoaraiosis scores did not appear to be beneficial for prognosis. J Neuroimaging 2008;XX:1-6.",
author = "Jens Fiehler and Susanne Siemonsen and G{\"o}tz Thomalla and Till Illies and Thomas Kucinski",
year = "2009",
language = "Deutsch",
journal = "J NEUROIMAGING",
issn = "1051-2284",
publisher = "Wiley-Blackwell",

}

RIS

TY - JOUR

T1 - Combination of T2*W and FLAIR abnormalities for the prediction of parenchymal hematoma following thrombolytic therapy in 100 stroke patients.

AU - Fiehler, Jens

AU - Siemonsen, Susanne

AU - Thomalla, Götz

AU - Illies, Till

AU - Kucinski, Thomas

PY - 2009

Y1 - 2009

N2 - ABSTRACT INTRODUCTION The objective of our study was to determine whether the combination of hypointense spots ("cerebral microbleeds," CMBs) with a leukoaraiosis is associated with the risk of parenchymal hematoma (PH) after thrombolytic therapy. PATIENTS AND METHODS We analyzed magnetic resonance imaging (MRI) scans acquired within 6 hours after symptom onset from 100 ischemic stroke patients. Multiparametric MRI including a T2*-weighted (T2*w) MRI and fluid attenuated inversion recovery (FLAIR) was performed before thrombolysis in all patients. Initial T2*w imaging was rated by two independent observers for the presence of CMBs smaller than 5 mm. White matter changes were evaluated using an adapted scale of Fazekas and Schmidt. PH was defined in follow-up imaging. FINDINGS A PH was observed in seven per 100 patients. CMBs were detected by observer 1 in 22 and observer 2 in 20 patients. We found a very low sensitivity (0.14) for prediction of PH by the presence of CMBs. We found a concordant increase in the rate of PH when the periventricular hyperintensity in FLAIR was larger than a thin lining. Sensitivity was good-to-perfect (0.86 and 1.00, observers 1 and 2) and specificity was substantial (0.65 and 0.66). Using the combination of a periventricular matter lesion (PVML)>1 and the presence of CMBs did not improve the prediction of PH. DISCUSSION A marked periventricular hyperintensity in FLAIR imaging seems to be associated with a substantially increased risk of PH. A combination of CMBs with leukoaraiosis scores did not appear to be beneficial for prognosis. J Neuroimaging 2008;XX:1-6.

AB - ABSTRACT INTRODUCTION The objective of our study was to determine whether the combination of hypointense spots ("cerebral microbleeds," CMBs) with a leukoaraiosis is associated with the risk of parenchymal hematoma (PH) after thrombolytic therapy. PATIENTS AND METHODS We analyzed magnetic resonance imaging (MRI) scans acquired within 6 hours after symptom onset from 100 ischemic stroke patients. Multiparametric MRI including a T2*-weighted (T2*w) MRI and fluid attenuated inversion recovery (FLAIR) was performed before thrombolysis in all patients. Initial T2*w imaging was rated by two independent observers for the presence of CMBs smaller than 5 mm. White matter changes were evaluated using an adapted scale of Fazekas and Schmidt. PH was defined in follow-up imaging. FINDINGS A PH was observed in seven per 100 patients. CMBs were detected by observer 1 in 22 and observer 2 in 20 patients. We found a very low sensitivity (0.14) for prediction of PH by the presence of CMBs. We found a concordant increase in the rate of PH when the periventricular hyperintensity in FLAIR was larger than a thin lining. Sensitivity was good-to-perfect (0.86 and 1.00, observers 1 and 2) and specificity was substantial (0.65 and 0.66). Using the combination of a periventricular matter lesion (PVML)>1 and the presence of CMBs did not improve the prediction of PH. DISCUSSION A marked periventricular hyperintensity in FLAIR imaging seems to be associated with a substantially increased risk of PH. A combination of CMBs with leukoaraiosis scores did not appear to be beneficial for prognosis. J Neuroimaging 2008;XX:1-6.

M3 - SCORING: Zeitschriftenaufsatz

JO - J NEUROIMAGING

JF - J NEUROIMAGING

SN - 1051-2284

ER -