Cell loss and autophagy in the extra-adrenal chromaffin organ of Zuckerkandl are regulated by glucocorticoid signalling

Standard

Cell loss and autophagy in the extra-adrenal chromaffin organ of Zuckerkandl are regulated by glucocorticoid signalling. / Schober, Andreas; Parlato, Rosanna; Huber, Katrin; Kinscherf, Ralf; Hartleben, Björn; Huber, Tobias B; Schütz, Günther; Unsicker, Klaus.

in: J NEUROENDOCRINOL, Jahrgang 25, Nr. 1, 01.2013, S. 34-47.

Publikationen: SCORING: Beitrag in Fachzeitschrift/ZeitungSCORING: ZeitschriftenaufsatzForschungBegutachtung

Harvard

APA

Vancouver

Bibtex

@article{cd5890de9b494860ab066637f5db9186,
title = "Cell loss and autophagy in the extra-adrenal chromaffin organ of Zuckerkandl are regulated by glucocorticoid signalling",
abstract = "Neuroendocrine chromaffin cells exist in both intra- and extra-adrenal locations; the organ of Zuckerkandl (OZ) constitutes the largest accumulation of extra-adrenal chromaffin tissue in mammals. The OZ disappears postnatally by modes that are still enigmatic but can be maintained by treatment with glucocorticoids (GC). Whether the response to GC reflects a pharmacological or a physiological role of GC has not been clarified. Using mice with a conditional deletion of the GC-receptor (GR) gene restricted to cells expressing the dopamine β-hydroxylase (DBH) gene [GR(fl/fl) ; DBHCre abbreviated (GR(DBHCre) )], we now present the first evidence for a physiological role of GC signalling in the postnatal maintenance of the OZ: postnatal losses of OZ chromaffin cells in GR(DBHCre) mice are doubled compared to wild-type littermates. We find that postnatal cell loss in the OZ starts at birth and is accompanied by autophagy. Electron microscopy reveals autophagic vacuoles and autophagolysosomes in chromaffin cells. Autophagy in OZ extra-adrenal chromaffin cells is confirmed by showing accumulation of p62 protein, which occurs, when autophagy is blocked by deleting the Atg5 gene (Atg5(DBHCre) mice). Cathepsin-D, a lysosomal marker, is expressed in cells that surround chromaffin cells and are positive for the macrophage marker BM8. Macrophages are relatively more abundant in mice lacking the GR, indicating more robust elimination of degenerating chromaffin cells in GR(DBHCre) mice than in wild-type littermates. In summary, our results indicate that extra-adrenal chromaffin cells in the OZ show signs of autophagy, which accompany their postnatal numerical decline, a process that is controlled by GR signalling.",
keywords = "Animals, Autophagy, Caspase 3, Cathepsin D, Cell Count, Chromaffin Cells, Gene Knockdown Techniques, Glucocorticoids, Mice, Para-Aortic Bodies, Receptors, Glucocorticoid, Signal Transduction, Transcription Factors, Journal Article, Research Support, Non-U.S. Gov't",
author = "Andreas Schober and Rosanna Parlato and Katrin Huber and Ralf Kinscherf and Bj{\"o}rn Hartleben and Huber, {Tobias B} and G{\"u}nther Sch{\"u}tz and Klaus Unsicker",
note = "{\textcopyright} 2012 British Society for Neuroendocrinology.",
year = "2013",
month = jan,
doi = "10.1111/j.1365-2826.2012.02367.x",
language = "English",
volume = "25",
pages = "34--47",
journal = "J NEUROENDOCRINOL",
issn = "0953-8194",
publisher = "Wiley-Blackwell",
number = "1",

}

RIS

TY - JOUR

T1 - Cell loss and autophagy in the extra-adrenal chromaffin organ of Zuckerkandl are regulated by glucocorticoid signalling

AU - Schober, Andreas

AU - Parlato, Rosanna

AU - Huber, Katrin

AU - Kinscherf, Ralf

AU - Hartleben, Björn

AU - Huber, Tobias B

AU - Schütz, Günther

AU - Unsicker, Klaus

N1 - © 2012 British Society for Neuroendocrinology.

PY - 2013/1

Y1 - 2013/1

N2 - Neuroendocrine chromaffin cells exist in both intra- and extra-adrenal locations; the organ of Zuckerkandl (OZ) constitutes the largest accumulation of extra-adrenal chromaffin tissue in mammals. The OZ disappears postnatally by modes that are still enigmatic but can be maintained by treatment with glucocorticoids (GC). Whether the response to GC reflects a pharmacological or a physiological role of GC has not been clarified. Using mice with a conditional deletion of the GC-receptor (GR) gene restricted to cells expressing the dopamine β-hydroxylase (DBH) gene [GR(fl/fl) ; DBHCre abbreviated (GR(DBHCre) )], we now present the first evidence for a physiological role of GC signalling in the postnatal maintenance of the OZ: postnatal losses of OZ chromaffin cells in GR(DBHCre) mice are doubled compared to wild-type littermates. We find that postnatal cell loss in the OZ starts at birth and is accompanied by autophagy. Electron microscopy reveals autophagic vacuoles and autophagolysosomes in chromaffin cells. Autophagy in OZ extra-adrenal chromaffin cells is confirmed by showing accumulation of p62 protein, which occurs, when autophagy is blocked by deleting the Atg5 gene (Atg5(DBHCre) mice). Cathepsin-D, a lysosomal marker, is expressed in cells that surround chromaffin cells and are positive for the macrophage marker BM8. Macrophages are relatively more abundant in mice lacking the GR, indicating more robust elimination of degenerating chromaffin cells in GR(DBHCre) mice than in wild-type littermates. In summary, our results indicate that extra-adrenal chromaffin cells in the OZ show signs of autophagy, which accompany their postnatal numerical decline, a process that is controlled by GR signalling.

AB - Neuroendocrine chromaffin cells exist in both intra- and extra-adrenal locations; the organ of Zuckerkandl (OZ) constitutes the largest accumulation of extra-adrenal chromaffin tissue in mammals. The OZ disappears postnatally by modes that are still enigmatic but can be maintained by treatment with glucocorticoids (GC). Whether the response to GC reflects a pharmacological or a physiological role of GC has not been clarified. Using mice with a conditional deletion of the GC-receptor (GR) gene restricted to cells expressing the dopamine β-hydroxylase (DBH) gene [GR(fl/fl) ; DBHCre abbreviated (GR(DBHCre) )], we now present the first evidence for a physiological role of GC signalling in the postnatal maintenance of the OZ: postnatal losses of OZ chromaffin cells in GR(DBHCre) mice are doubled compared to wild-type littermates. We find that postnatal cell loss in the OZ starts at birth and is accompanied by autophagy. Electron microscopy reveals autophagic vacuoles and autophagolysosomes in chromaffin cells. Autophagy in OZ extra-adrenal chromaffin cells is confirmed by showing accumulation of p62 protein, which occurs, when autophagy is blocked by deleting the Atg5 gene (Atg5(DBHCre) mice). Cathepsin-D, a lysosomal marker, is expressed in cells that surround chromaffin cells and are positive for the macrophage marker BM8. Macrophages are relatively more abundant in mice lacking the GR, indicating more robust elimination of degenerating chromaffin cells in GR(DBHCre) mice than in wild-type littermates. In summary, our results indicate that extra-adrenal chromaffin cells in the OZ show signs of autophagy, which accompany their postnatal numerical decline, a process that is controlled by GR signalling.

KW - Animals

KW - Autophagy

KW - Caspase 3

KW - Cathepsin D

KW - Cell Count

KW - Chromaffin Cells

KW - Gene Knockdown Techniques

KW - Glucocorticoids

KW - Mice

KW - Para-Aortic Bodies

KW - Receptors, Glucocorticoid

KW - Signal Transduction

KW - Transcription Factors

KW - Journal Article

KW - Research Support, Non-U.S. Gov't

U2 - 10.1111/j.1365-2826.2012.02367.x

DO - 10.1111/j.1365-2826.2012.02367.x

M3 - SCORING: Journal article

C2 - 23078542

VL - 25

SP - 34

EP - 47

JO - J NEUROENDOCRINOL

JF - J NEUROENDOCRINOL

SN - 0953-8194

IS - 1

ER -