Caldendrin Directly Couples Postsynaptic Calcium Signals to Actin Remodeling in Dendritic Spines

  • Marina Mikhaylova
  • Julia Bär
  • Bas van Bommel
  • Philipp Schätzle
  • PingAn YuanXiang
  • Rajeev Raman
  • Johannes Hradsky
  • Anja Konietzny
  • Egor Y Loktionov
  • Pasham Parameshwar Reddy
  • Jeffrey Lopez-Rojas
  • Christina Spilker
  • Oliver Kobler
  • Syed Ahsan Raza
  • Oliver Stork
  • Casper C Hoogenraad
  • Michael R Kreutz

Abstract

Compartmentalization of calcium-dependent plasticity allows for rapid actin remodeling in dendritic spines. However, molecular mechanisms for the spatio-temporal regulation of filamentous actin (F-actin) dynamics by spinous Ca2+-transients are still poorly defined. We show that the postsynaptic Ca2+ sensor caldendrin orchestrates nano-domain actin dynamics that are essential for actin remodeling in the early phase of long-term potentiation (LTP). Steep elevation in spinous [Ca2+]i disrupts an intramolecular interaction of caldendrin and allows cortactin binding. The fast on and slow off rate of this interaction keeps cortactin in an active conformation, and protects F-actin at the spine base against cofilin-induced severing. Caldendrin gene knockout results in higher synaptic actin turnover, altered nanoscale organization of spinous F-actin, defects in structural spine plasticity, LTP, and hippocampus-dependent learning. Collectively, the data indicate that caldendrin-cortactin directly couple [Ca2+]i to preserve a minimal F-actin pool that is required for actin remodeling in the early phase of LTP.

Bibliografische Daten

OriginalspracheEnglisch
ISSN0896-6273
DOIs
StatusVeröffentlicht - 07.03.2018
PubMed 29478916