Ca2+ channels in retinal pigment epithelial cells regulate vascular endothelial growth factor secretion rates in health and disease.

Links

  • Rita Rosenthal
  • Heinrich Heimann
  • Hansjürgen Agostini
  • Gottfried Martin
  • Lutz Lothar Hansen
  • Olaf Strauss

Abstract

PURPOSE: Choroidal neovascularization (CNV) is the most severe complication in age-related macular degeneration. The major angiogenic factor involved is vascular endothelial growth factor (VEGF) secreted by the retinal pigment epithelium (RPE). Since RPE cells express neuroendocrine L-type Ca2+ channels we investigated their involvement in VEGF secretion in normal RPE cells and RPE cells from patients with CNV. METHODS: Freshly isolated and cultured RPE cells were studied using the patch-clamp technique and ELISA-based secretion assays. RESULTS: Both freshly isolated and cultured cells showed whole-cell Ba2+ currents with properties of L-type Ca2+ currents: high activation threshold, sensitivity to dihydropyridines (10 muM nifedipine) and slow inactivation. VEGF-A secretion was elevated by BayK8644 (10 microM) or basic fibroblast growth factor (bFGF, 10 ng/ml), both of which are able to activate L-type channels. Cells from CNV tissue also showed nifedipine-sensitive Ba2+ currents, which displayed a voltage-dependent activation at more negative potentials, faster inactivation and changed regulation by tyrosine kinase pp60(c-src). The CNV RPE cells showed higher VEGF secretion rates which were reduced by nifedipine. CONCLUSIONS: Thus, L-type Ca2+ channels in normal RPE cells regulate the secretion of VEGF. RPE cells from eyes with CNV maintain a VEGF secretion regulated by nifedipine-sensitve Ca2+ channels which might be of importance for the development of CNV.

Bibliografische Daten

OriginalspracheDeutsch
ISSN1090-0535
StatusVeröffentlicht - 2007
pubmed 17417605