Biomechanical characterization of human temporal muscle fascia in uniaxial tensile tests for graft purposes in duraplasty

Standard

Biomechanical characterization of human temporal muscle fascia in uniaxial tensile tests for graft purposes in duraplasty. / Zwirner, Johann; Ondruschka, Benjamin; Scholze, Mario; Schulze-Tanzil, Gundula; Hammer, Niels.

in: SCI REP-UK, Jahrgang 11, Nr. 1, 2127, 22.01.2021.

Publikationen: SCORING: Beitrag in Fachzeitschrift/ZeitungSCORING: ZeitschriftenaufsatzForschungBegutachtung

Harvard

APA

Vancouver

Bibtex

@article{c414406dc98742229637033b50ae02fd,
title = "Biomechanical characterization of human temporal muscle fascia in uniaxial tensile tests for graft purposes in duraplasty",
abstract = "The human temporal muscle fascia (TMF) is used frequently as a graft material for duraplasty. Encompassing biomechanical analyses of TMF are lacking, impeding a well-grounded biomechanical comparison of the TMF to other graft materials used for duraplasty, including the dura mater itself. In this study, we investigated the biomechanical properties of 74 human TMF samples in comparison to an age-matched group of dura mater samples. The TMF showed an elastic modulus of 36 ± 19 MPa, an ultimate tensile strength of 3.6 ± 1.7 MPa, a maximum force of 16 ± 8 N, a maximum strain of 13 ± 4% and a strain at failure of 17 ± 6%. Post-mortem interval correlated weakly with elastic modulus (r = 0.255, p = 0.048) and the strain at failure (r =  - 0.306, p = 0.022) for TMF. The age of the donors did not reveal significant correlations to the TMF mechanical parameters. Compared to the dura mater, the here investigated TMF showed a significantly lower elastic modulus and ultimate tensile strength, but a larger strain at failure. The human TMF with a post-mortem interval of up to 146 h may be considered a mechanically suitable graft material for duraplasty when stored at a temperature of 4 °C.",
author = "Johann Zwirner and Benjamin Ondruschka and Mario Scholze and Gundula Schulze-Tanzil and Niels Hammer",
year = "2021",
month = jan,
day = "22",
doi = "10.1038/s41598-020-80448-1",
language = "English",
volume = "11",
journal = "SCI REP-UK",
issn = "2045-2322",
publisher = "NATURE PUBLISHING GROUP",
number = "1",

}

RIS

TY - JOUR

T1 - Biomechanical characterization of human temporal muscle fascia in uniaxial tensile tests for graft purposes in duraplasty

AU - Zwirner, Johann

AU - Ondruschka, Benjamin

AU - Scholze, Mario

AU - Schulze-Tanzil, Gundula

AU - Hammer, Niels

PY - 2021/1/22

Y1 - 2021/1/22

N2 - The human temporal muscle fascia (TMF) is used frequently as a graft material for duraplasty. Encompassing biomechanical analyses of TMF are lacking, impeding a well-grounded biomechanical comparison of the TMF to other graft materials used for duraplasty, including the dura mater itself. In this study, we investigated the biomechanical properties of 74 human TMF samples in comparison to an age-matched group of dura mater samples. The TMF showed an elastic modulus of 36 ± 19 MPa, an ultimate tensile strength of 3.6 ± 1.7 MPa, a maximum force of 16 ± 8 N, a maximum strain of 13 ± 4% and a strain at failure of 17 ± 6%. Post-mortem interval correlated weakly with elastic modulus (r = 0.255, p = 0.048) and the strain at failure (r =  - 0.306, p = 0.022) for TMF. The age of the donors did not reveal significant correlations to the TMF mechanical parameters. Compared to the dura mater, the here investigated TMF showed a significantly lower elastic modulus and ultimate tensile strength, but a larger strain at failure. The human TMF with a post-mortem interval of up to 146 h may be considered a mechanically suitable graft material for duraplasty when stored at a temperature of 4 °C.

AB - The human temporal muscle fascia (TMF) is used frequently as a graft material for duraplasty. Encompassing biomechanical analyses of TMF are lacking, impeding a well-grounded biomechanical comparison of the TMF to other graft materials used for duraplasty, including the dura mater itself. In this study, we investigated the biomechanical properties of 74 human TMF samples in comparison to an age-matched group of dura mater samples. The TMF showed an elastic modulus of 36 ± 19 MPa, an ultimate tensile strength of 3.6 ± 1.7 MPa, a maximum force of 16 ± 8 N, a maximum strain of 13 ± 4% and a strain at failure of 17 ± 6%. Post-mortem interval correlated weakly with elastic modulus (r = 0.255, p = 0.048) and the strain at failure (r =  - 0.306, p = 0.022) for TMF. The age of the donors did not reveal significant correlations to the TMF mechanical parameters. Compared to the dura mater, the here investigated TMF showed a significantly lower elastic modulus and ultimate tensile strength, but a larger strain at failure. The human TMF with a post-mortem interval of up to 146 h may be considered a mechanically suitable graft material for duraplasty when stored at a temperature of 4 °C.

U2 - 10.1038/s41598-020-80448-1

DO - 10.1038/s41598-020-80448-1

M3 - SCORING: Journal article

C2 - 33483525

VL - 11

JO - SCI REP-UK

JF - SCI REP-UK

SN - 2045-2322

IS - 1

M1 - 2127

ER -