Beta1-integrins mediate Ca2+-signalling and T cell spreading via divergent pathways.

  • H Schöttelndreier
  • Georg W. Mayr
  • A H Guse

Abstract

Interaction of Jurkat T-lymphocytes with two extracellular matrix (ECM) proteins of the basement membrane, laminin or collagen type IV, combined with poly-L-lysine resulted in a strong adhesion, a highly increased intracellular Ca2+-concentration ([Ca2]i), as compared to cells on laminin or collagen type IV alone and in spreading of the cells. The strong adhesion was independent of an increase in [Ca2+]i, was not mediated by a beta1-integrin, and was due to charge interaction between the positively charged polyaminoacid and the negatively charged cell surface. The latter was confirmed by substitution of poly-L-lysine by other positively charged polyaminoacids. In contrast, Ca+-signalling and spreading of the cells adhering to laminin or collagen type IV combined with poly-L-lysine was completely blocked by anti-beta1 mAb. However, spreading of the cells was independent of an increase in [Ca2+]i suggesting divergent signal transduction pathways leading to Ca2+-signalling and spreading of the cells. We elucidated these signal transduction pathways by inhibition of key enzymes involved. The tyrosine kinase inhibitor genistein blocked Ca2+-signalling as well as spreading, whereas inhibitors of PKC (calphostin C, GF109203x), PLCgamma (U73122) and PLA2 (bromophenacyl-bromide (BPB), 3-[4-octadecyl)benzoyl]acrylic acid (OBAA)) selectively blocked spreading of the cells.

Bibliografische Daten

OriginalspracheDeutsch
Aufsatznummer8
ISSN0898-6568
StatusVeröffentlicht - 1999
pubmed 10433522