Acetylcholine modulates human working memory and subsequent familiarity based recognition via alpha oscillations

Standard

Acetylcholine modulates human working memory and subsequent familiarity based recognition via alpha oscillations. / Eckart, Cindy; Woźniak-Kwaśniewska, Agata; Herweg, Nora A; Fuentemilla, Lluis; Bunzeck, Nico.

in: NEUROIMAGE, Jahrgang 137, 15.08.2016, S. 61-9.

Publikationen: SCORING: Beitrag in Fachzeitschrift/ZeitungSCORING: ZeitschriftenaufsatzForschungBegutachtung

Harvard

APA

Vancouver

Bibtex

@article{c855a9de2f154a1e809f310fd9683ee6,
title = "Acetylcholine modulates human working memory and subsequent familiarity based recognition via alpha oscillations",
abstract = "Working memory (WM) can be defined as the ability to maintain and process physically absent information for a short period of time. This vital cognitive function has been related to cholinergic neuromodulation and, in independent work, to theta (4-8Hz) and alpha (9-14Hz) band oscillations. However, the relationship between both aspects remains unclear. To fill this apparent gap, we used electroencephalography (EEG) and a within-subject design in healthy humans who either received the acetylcholinesterase inhibitor galantamine (8mg) or a placebo before they performed a Sternberg WM paradigm. Here, sequences of sample images were memorized for a delay of 5s in three different load conditions (two, four or six items). On the next day, long-term memory (LTM) for the images was tested according to a remember/know paradigm. As a main finding, we can show that both theta and alpha oscillations scale during WM maintenance as a function of WM load; this resembles the typical performance decrease. Importantly, cholinergic stimulation via galantamine administration slowed down retrieval speed during WM and reduced associated alpha but not theta power, suggesting a functional relationship between alpha oscillations and WM performance. At LTM, this pattern was accompanied by impaired familiarity based recognition. These findings show that stimulating the healthy cholinergic system impairs WM and subsequent recognition, which is in line with the notion of a quadratic relationship between acetylcholine levels and cognitive functions. Moreover, our data provide empirical evidence for a specific role of alpha oscillations in acetylcholine dependent WM and associated LTM formation.",
keywords = "Journal Article",
author = "Cindy Eckart and Agata Wo{\'z}niak-Kwa{\'s}niewska and Herweg, {Nora A} and Lluis Fuentemilla and Nico Bunzeck",
note = "Copyright {\textcopyright} 2016 Elsevier Inc. All rights reserved.",
year = "2016",
month = aug,
day = "15",
doi = "10.1016/j.neuroimage.2016.05.049",
language = "English",
volume = "137",
pages = "61--9",
journal = "NEUROIMAGE",
issn = "1053-8119",
publisher = "Academic Press",

}

RIS

TY - JOUR

T1 - Acetylcholine modulates human working memory and subsequent familiarity based recognition via alpha oscillations

AU - Eckart, Cindy

AU - Woźniak-Kwaśniewska, Agata

AU - Herweg, Nora A

AU - Fuentemilla, Lluis

AU - Bunzeck, Nico

N1 - Copyright © 2016 Elsevier Inc. All rights reserved.

PY - 2016/8/15

Y1 - 2016/8/15

N2 - Working memory (WM) can be defined as the ability to maintain and process physically absent information for a short period of time. This vital cognitive function has been related to cholinergic neuromodulation and, in independent work, to theta (4-8Hz) and alpha (9-14Hz) band oscillations. However, the relationship between both aspects remains unclear. To fill this apparent gap, we used electroencephalography (EEG) and a within-subject design in healthy humans who either received the acetylcholinesterase inhibitor galantamine (8mg) or a placebo before they performed a Sternberg WM paradigm. Here, sequences of sample images were memorized for a delay of 5s in three different load conditions (two, four or six items). On the next day, long-term memory (LTM) for the images was tested according to a remember/know paradigm. As a main finding, we can show that both theta and alpha oscillations scale during WM maintenance as a function of WM load; this resembles the typical performance decrease. Importantly, cholinergic stimulation via galantamine administration slowed down retrieval speed during WM and reduced associated alpha but not theta power, suggesting a functional relationship between alpha oscillations and WM performance. At LTM, this pattern was accompanied by impaired familiarity based recognition. These findings show that stimulating the healthy cholinergic system impairs WM and subsequent recognition, which is in line with the notion of a quadratic relationship between acetylcholine levels and cognitive functions. Moreover, our data provide empirical evidence for a specific role of alpha oscillations in acetylcholine dependent WM and associated LTM formation.

AB - Working memory (WM) can be defined as the ability to maintain and process physically absent information for a short period of time. This vital cognitive function has been related to cholinergic neuromodulation and, in independent work, to theta (4-8Hz) and alpha (9-14Hz) band oscillations. However, the relationship between both aspects remains unclear. To fill this apparent gap, we used electroencephalography (EEG) and a within-subject design in healthy humans who either received the acetylcholinesterase inhibitor galantamine (8mg) or a placebo before they performed a Sternberg WM paradigm. Here, sequences of sample images were memorized for a delay of 5s in three different load conditions (two, four or six items). On the next day, long-term memory (LTM) for the images was tested according to a remember/know paradigm. As a main finding, we can show that both theta and alpha oscillations scale during WM maintenance as a function of WM load; this resembles the typical performance decrease. Importantly, cholinergic stimulation via galantamine administration slowed down retrieval speed during WM and reduced associated alpha but not theta power, suggesting a functional relationship between alpha oscillations and WM performance. At LTM, this pattern was accompanied by impaired familiarity based recognition. These findings show that stimulating the healthy cholinergic system impairs WM and subsequent recognition, which is in line with the notion of a quadratic relationship between acetylcholine levels and cognitive functions. Moreover, our data provide empirical evidence for a specific role of alpha oscillations in acetylcholine dependent WM and associated LTM formation.

KW - Journal Article

U2 - 10.1016/j.neuroimage.2016.05.049

DO - 10.1016/j.neuroimage.2016.05.049

M3 - SCORING: Journal article

C2 - 27222217

VL - 137

SP - 61

EP - 69

JO - NEUROIMAGE

JF - NEUROIMAGE

SN - 1053-8119

ER -