A polysialic acid mimetic peptide promotes functional recovery in a mouse model of spinal cord injury.

Standard

A polysialic acid mimetic peptide promotes functional recovery in a mouse model of spinal cord injury. / Marino, Philippe; Norreel, Jean-Chrétien; Schachner, Melitta; Rougon, Geneviève; Amoureux, Marie-Claude.

in: EXP NEUROL, Jahrgang 219, Nr. 1, 1, 2009, S. 163-174.

Publikationen: SCORING: Beitrag in Fachzeitschrift/ZeitungSCORING: ZeitschriftenaufsatzForschungBegutachtung

Harvard

APA

Vancouver

Marino P, Norreel J-C, Schachner M, Rougon G, Amoureux M-C. A polysialic acid mimetic peptide promotes functional recovery in a mouse model of spinal cord injury. EXP NEUROL. 2009;219(1):163-174. 1.

Bibtex

@article{86256897b89a46fc8feefefa8e2dbfcf,
title = "A polysialic acid mimetic peptide promotes functional recovery in a mouse model of spinal cord injury.",
abstract = "Contrary to lower species that recapitulate some of the developmental programs, in mammals, functional recovery after spinal cord injury is impaired by a non-permissive environment and the lack of plasticity of adult neurons. The developmental plasticity associated linear homopolymer of alpha 2,8-linked sialic acid (PolySialic Acid, PSA), represents a permissive determinant that could contribute to recovery. We previously showed that a PSA cyclic mimetic peptide (PR-21) displayed PSA-like biological functions (Torregrossa, P., Buhl, L., Bancila, M., Durbec, P., Schafer, C., Schachner, M., Rougon, G., 2004. Selection of poly-alpha 2,8-sialic acid mimotopes from a random phage peptide library and analysis of their bioactivity. J. Biol. Chem. 279, 30707-30714.). In the present study we investigated the therapeutic potential of PR-21 in young adult mice after dorsal hemisection at the T9 level. We show that PR-21 fulfills several criteria for an in vivo use as it is not toxic, not immunogenic and displays good stability in biological fluids or tissue. Delivery of PR-21 to the lesion site decreased the time of the animals' return to continence, and enhanced motor functions, sensorimotor control and coordination of hindlimbs with forelimbs when compared to a control peptide. At the cellular level, PR-21 increased serotonergic axon density at and caudal to the lesion site, and decreased reactive gliosis in vivo. In an in vitro model of reactive astrocytes, PR-21 increased NCAM expression in strongly GFAP positive cells. Our data point to the unique features of a carbohydrate mimicking peptide, and support the notion that PSA can be considered as an important factor in recovery from spinal cord injury.",
author = "Philippe Marino and Jean-Chr{\'e}tien Norreel and Melitta Schachner and Genevi{\`e}ve Rougon and Marie-Claude Amoureux",
year = "2009",
language = "Deutsch",
volume = "219",
pages = "163--174",
journal = "EXP NEUROL",
issn = "0014-4886",
publisher = "Academic Press Inc.",
number = "1",

}

RIS

TY - JOUR

T1 - A polysialic acid mimetic peptide promotes functional recovery in a mouse model of spinal cord injury.

AU - Marino, Philippe

AU - Norreel, Jean-Chrétien

AU - Schachner, Melitta

AU - Rougon, Geneviève

AU - Amoureux, Marie-Claude

PY - 2009

Y1 - 2009

N2 - Contrary to lower species that recapitulate some of the developmental programs, in mammals, functional recovery after spinal cord injury is impaired by a non-permissive environment and the lack of plasticity of adult neurons. The developmental plasticity associated linear homopolymer of alpha 2,8-linked sialic acid (PolySialic Acid, PSA), represents a permissive determinant that could contribute to recovery. We previously showed that a PSA cyclic mimetic peptide (PR-21) displayed PSA-like biological functions (Torregrossa, P., Buhl, L., Bancila, M., Durbec, P., Schafer, C., Schachner, M., Rougon, G., 2004. Selection of poly-alpha 2,8-sialic acid mimotopes from a random phage peptide library and analysis of their bioactivity. J. Biol. Chem. 279, 30707-30714.). In the present study we investigated the therapeutic potential of PR-21 in young adult mice after dorsal hemisection at the T9 level. We show that PR-21 fulfills several criteria for an in vivo use as it is not toxic, not immunogenic and displays good stability in biological fluids or tissue. Delivery of PR-21 to the lesion site decreased the time of the animals' return to continence, and enhanced motor functions, sensorimotor control and coordination of hindlimbs with forelimbs when compared to a control peptide. At the cellular level, PR-21 increased serotonergic axon density at and caudal to the lesion site, and decreased reactive gliosis in vivo. In an in vitro model of reactive astrocytes, PR-21 increased NCAM expression in strongly GFAP positive cells. Our data point to the unique features of a carbohydrate mimicking peptide, and support the notion that PSA can be considered as an important factor in recovery from spinal cord injury.

AB - Contrary to lower species that recapitulate some of the developmental programs, in mammals, functional recovery after spinal cord injury is impaired by a non-permissive environment and the lack of plasticity of adult neurons. The developmental plasticity associated linear homopolymer of alpha 2,8-linked sialic acid (PolySialic Acid, PSA), represents a permissive determinant that could contribute to recovery. We previously showed that a PSA cyclic mimetic peptide (PR-21) displayed PSA-like biological functions (Torregrossa, P., Buhl, L., Bancila, M., Durbec, P., Schafer, C., Schachner, M., Rougon, G., 2004. Selection of poly-alpha 2,8-sialic acid mimotopes from a random phage peptide library and analysis of their bioactivity. J. Biol. Chem. 279, 30707-30714.). In the present study we investigated the therapeutic potential of PR-21 in young adult mice after dorsal hemisection at the T9 level. We show that PR-21 fulfills several criteria for an in vivo use as it is not toxic, not immunogenic and displays good stability in biological fluids or tissue. Delivery of PR-21 to the lesion site decreased the time of the animals' return to continence, and enhanced motor functions, sensorimotor control and coordination of hindlimbs with forelimbs when compared to a control peptide. At the cellular level, PR-21 increased serotonergic axon density at and caudal to the lesion site, and decreased reactive gliosis in vivo. In an in vitro model of reactive astrocytes, PR-21 increased NCAM expression in strongly GFAP positive cells. Our data point to the unique features of a carbohydrate mimicking peptide, and support the notion that PSA can be considered as an important factor in recovery from spinal cord injury.

M3 - SCORING: Zeitschriftenaufsatz

VL - 219

SP - 163

EP - 174

JO - EXP NEUROL

JF - EXP NEUROL

SN - 0014-4886

IS - 1

M1 - 1

ER -