A bistable inhibitory OptoGPCR for multiplexed optogenetic control of neural circuits

Standard

A bistable inhibitory OptoGPCR for multiplexed optogenetic control of neural circuits. / Wietek, Jonas; Nozownik, Adrianna; Pulin, Mauro; Saraf-Sinik, Inbar; Matosevich, Noa; Malan, Daniela; Brown, Bobbie J; Dine, Julien; Levy, Rivka; Litvin, Anna; Regev, Noa; Subramaniam, Suraj; Bitton, Eyal; Benjamin, Asaf; Copits, Bryan A; Sasse, Philipp; Rost, Benjamin R; Schmitz, Dietmar; Soba, Peter; Nir, Yuval; Wiegert, J Simon; Yizhar, Ofer.

in: bioRxiv, 02.07.2023.

Publikationen: SCORING: Beitrag in Fachzeitschrift/ZeitungPreprintForschung

Harvard

Wietek, J, Nozownik, A, Pulin, M, Saraf-Sinik, I, Matosevich, N, Malan, D, Brown, BJ, Dine, J, Levy, R, Litvin, A, Regev, N, Subramaniam, S, Bitton, E, Benjamin, A, Copits, BA, Sasse, P, Rost, BR, Schmitz, D, Soba, P, Nir, Y, Wiegert, JS & Yizhar, O 2023, 'A bistable inhibitory OptoGPCR for multiplexed optogenetic control of neural circuits', bioRxiv. https://doi.org/10.1101/2023.07.01.547328

APA

Wietek, J., Nozownik, A., Pulin, M., Saraf-Sinik, I., Matosevich, N., Malan, D., Brown, B. J., Dine, J., Levy, R., Litvin, A., Regev, N., Subramaniam, S., Bitton, E., Benjamin, A., Copits, B. A., Sasse, P., Rost, B. R., Schmitz, D., Soba, P., ... Yizhar, O. (2023). A bistable inhibitory OptoGPCR for multiplexed optogenetic control of neural circuits. bioRxiv. https://doi.org/10.1101/2023.07.01.547328

Vancouver

Wietek J, Nozownik A, Pulin M, Saraf-Sinik I, Matosevich N, Malan D et al. A bistable inhibitory OptoGPCR for multiplexed optogenetic control of neural circuits. bioRxiv. 2023 Jul 2. https://doi.org/10.1101/2023.07.01.547328

Bibtex

@article{5eaf9ebacea24623abcd1d501e60bf69,
title = "A bistable inhibitory OptoGPCR for multiplexed optogenetic control of neural circuits",
abstract = "Information is transmitted between brain regions through the release of neurotransmitters from long-range projecting axons. Understanding how the activity of such long-range connections contributes to behavior requires efficient methods for reversibly manipulating their function. Chemogenetic and optogenetic tools, acting through endogenous G-protein coupled receptor (GPCRs) pathways, can be used to modulate synaptic transmission, but existing tools are limited in sensitivity, spatiotemporal precision, or spectral multiplexing capabilities. Here we systematically evaluated multiple bistable opsins for optogenetic applications and found that the Platynereis dumerilii ciliary opsin (PdCO) is an efficient, versatile, light-activated bistable GPCR that can suppress synaptic transmission in mammalian neurons with high temporal precision in-vivo. PdCO has superior biophysical properties that enable spectral multiplexing with other optogenetic actuators and reporters. We demonstrate that PdCO can be used to conduct reversible loss-of-function experiments in long-range projections of behaving animals, thereby enabling detailed synapse-specific functional circuit mapping.",
author = "Jonas Wietek and Adrianna Nozownik and Mauro Pulin and Inbar Saraf-Sinik and Noa Matosevich and Daniela Malan and Brown, {Bobbie J} and Julien Dine and Rivka Levy and Anna Litvin and Noa Regev and Suraj Subramaniam and Eyal Bitton and Asaf Benjamin and Copits, {Bryan A} and Philipp Sasse and Rost, {Benjamin R} and Dietmar Schmitz and Peter Soba and Yuval Nir and Wiegert, {J Simon} and Ofer Yizhar",
year = "2023",
month = jul,
day = "2",
doi = "10.1101/2023.07.01.547328",
language = "English",
journal = "bioRxiv",
issn = "2692-8205",

}

RIS

TY - JOUR

T1 - A bistable inhibitory OptoGPCR for multiplexed optogenetic control of neural circuits

AU - Wietek, Jonas

AU - Nozownik, Adrianna

AU - Pulin, Mauro

AU - Saraf-Sinik, Inbar

AU - Matosevich, Noa

AU - Malan, Daniela

AU - Brown, Bobbie J

AU - Dine, Julien

AU - Levy, Rivka

AU - Litvin, Anna

AU - Regev, Noa

AU - Subramaniam, Suraj

AU - Bitton, Eyal

AU - Benjamin, Asaf

AU - Copits, Bryan A

AU - Sasse, Philipp

AU - Rost, Benjamin R

AU - Schmitz, Dietmar

AU - Soba, Peter

AU - Nir, Yuval

AU - Wiegert, J Simon

AU - Yizhar, Ofer

PY - 2023/7/2

Y1 - 2023/7/2

N2 - Information is transmitted between brain regions through the release of neurotransmitters from long-range projecting axons. Understanding how the activity of such long-range connections contributes to behavior requires efficient methods for reversibly manipulating their function. Chemogenetic and optogenetic tools, acting through endogenous G-protein coupled receptor (GPCRs) pathways, can be used to modulate synaptic transmission, but existing tools are limited in sensitivity, spatiotemporal precision, or spectral multiplexing capabilities. Here we systematically evaluated multiple bistable opsins for optogenetic applications and found that the Platynereis dumerilii ciliary opsin (PdCO) is an efficient, versatile, light-activated bistable GPCR that can suppress synaptic transmission in mammalian neurons with high temporal precision in-vivo. PdCO has superior biophysical properties that enable spectral multiplexing with other optogenetic actuators and reporters. We demonstrate that PdCO can be used to conduct reversible loss-of-function experiments in long-range projections of behaving animals, thereby enabling detailed synapse-specific functional circuit mapping.

AB - Information is transmitted between brain regions through the release of neurotransmitters from long-range projecting axons. Understanding how the activity of such long-range connections contributes to behavior requires efficient methods for reversibly manipulating their function. Chemogenetic and optogenetic tools, acting through endogenous G-protein coupled receptor (GPCRs) pathways, can be used to modulate synaptic transmission, but existing tools are limited in sensitivity, spatiotemporal precision, or spectral multiplexing capabilities. Here we systematically evaluated multiple bistable opsins for optogenetic applications and found that the Platynereis dumerilii ciliary opsin (PdCO) is an efficient, versatile, light-activated bistable GPCR that can suppress synaptic transmission in mammalian neurons with high temporal precision in-vivo. PdCO has superior biophysical properties that enable spectral multiplexing with other optogenetic actuators and reporters. We demonstrate that PdCO can be used to conduct reversible loss-of-function experiments in long-range projections of behaving animals, thereby enabling detailed synapse-specific functional circuit mapping.

U2 - 10.1101/2023.07.01.547328

DO - 10.1101/2023.07.01.547328

M3 - Preprint

C2 - 37425961

JO - bioRxiv

JF - bioRxiv

SN - 2692-8205

ER -