
An International Journal Specializing in
Environmental Mutagenesis

Environmental and
Molecular Mutagenesis

Mechanisms of mutagenesis

Genomics

DNA Damage

Replication, Recombination, and Repair

DNA Technology

Public Health

ISSN: 0893-6692

View this journal online at wileyonlinelibrary.com

Discover th
is journal online at

wileyonlinelibrary.com

Volume 56
Number 6
July 2015

In this issue: Rothkamm et al review the use of DNA damage foci to understand the cellular
and individual responses to DNA damaging agents.



Review

DNADamage Foci: Meaning and Significance
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The discovery of DNA damage response pro-
teins such as gH2AX, ATM, 53BP1, RAD51,
and the MRE11/RAD50/NBS1 complex, that
accumulate and/or are modified in the vicinity
of a chromosomal DNA double-strand break to
form microscopically visible, subnuclear foci,
has revolutionized the detection of these lesions
and has enabled studies of the cellular machin-
ery that contributes to their repair. Double-
strand breaks are induced directly by a number
of physical and chemical agents, including ion-

izing radiation and radiomimetic drugs, but can
also arise as secondary lesions during replica-
tion and DNA repair following exposure to a
wide range of genotoxins. Here we aim to
review the biological meaning and significance
of DNA damage foci, looking specifically at a
range of different settings in which such
markers of DNA damage and repair are being
studied and interpreted. Environ. Mol. Mutagen.
56:491–504, 2015. VC 2015 Wiley Periodicals, Inc.
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WHATARE DNADAMAGE FOCI?

There are a number of different names in use for DNA

damage foci, such as (ionizing) radiation-induced foci

(IRIF or RIF) or DNA repair foci. In general they all

refer to local accumulations or modifications of DNA

damage response proteins that form at the sites of DNA

double-strand breaks and can be visualized through

microscopic imaging following immunocyto- or -histo-

chemical detection or fluorescent protein tagging (Figs. 1

and 2). The first and most prominent protein for which

foci formation at the site of a double strand break was

described is the histone variant H2AX which gets phos-

phorylated at its C-terminal Ser-139 residue by the DNA

damage-activated kinases ATM, ATR, and DNA-PK

[Stiff et al., 2004] to form gH2AX. As this phosphoryla-

tion event is restricted to a chromosomal region surround-

ing an unrepaired double-strand break but involves

hundreds to thousands of histone modifications within this

region, it can be detected microscopically as a distinct

spot or ‘focus’ of several hundred nanometres diameter

following immunostaining against the phosphorylated

form of the histone [Rogakou et al., 1999]. gH2AX then

acts as a docking station for other DNA damage signaling

factors such as MDC1 and 53BP1 which accumulate to

form foci in a histone-modification-dependent manner

(recently reviewed in [Panier and Boulton, 2014]).

TECHNICAL ASPECTS OF FOCI DETECTION

DNA damage foci have been studied in a wide range

of established cell lines, primary cell cultures, peripheral

blood lymphocytes which are of great relevance in patient

studies, three-dimensional in vitro tissue models as well

as histological sections of human and animal tissues. Foci

are most commonly detected by immunofluorescence
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microscopy, but can also be analysed using fluorescent

protein fusion constructs, enabling foci formation and loss

to be monitored in live cells. Immunohistochemical stain-

ing methods using chromogenic substrates have also been

successfully employed to detect foci in sections obtained

from formalin-fixed paraffin-embedded tissue blocks. Foci

quantification can be performed by manual scoring

through the eyepieces of a microscope, manual scoring of

digital microscope images or automated scoring using

commercial or open source image analysis software pack-

ages. In all cases it is of crucial importance to define and

maintain strict scoring criteria. As scoring is severely

influenced by staining quality and imaging characteristics,

it is good practice to include positive and negative refer-

ence samples which help confirm the validity and repro-

ducibility of the results obtained in a particular

experiment. One frequently voiced caveat of manual scor-

ing, lack of objectivity of the scoring procedure, can be

easily overcome by coding samples to remove any bias.

Further details of biosampling, foci staining, detection

and quantification have been discussed elsewhere [Olive,

2004; Nakamura et al., 2006; Rothkamm and Horn, 2009;

L€obrich et al., 2010; Ivashkevich et al., 2011; Redon et al.,

2011; Barnard et al., 2013; Vignard et al., 2013; Pouliliou

and Koukourakis, 2014]. Intensity-based approaches such

as flow cytometry or Western blotting are also commonly

used to study foci-forming DNA damage response proteins

(see e.g. [Olive, 2004; Tanaka et al., 2007, 2009; Pope

et al., 2011; Rosen et al., 2014]). However, it must be

stressed that these assays, which merely measure total

abundance of the protein or modification, are typically less

sensitive than imaging approaches (e.g. [Horn et al.,

2011]) and blind to the intranuclear spatial distribution of

the proteins of interest.

DNA damage foci are now widely studied in a range

of different research areas, utilizing very diverse organ-

isms, such as yeasts, plants, rodents and humans. The fol-

lowing sections discuss their meaning and significance in

different applications.

DNADOUBLE-STRAND BREAKS

Each human cell has to repair numerous DNA lesions

every day as a result of spontaneous decay, replication

Fig.1. Examples of DNA damage foci in cultured cells. (A) Colocaliz-

ing gH2AX, 53BP1, and MDC1 foci indicative of DSBs in UTSCC14

head and neck squamous cell carcinoma cells 30 min and 24 h follow-

ing treatment with 2 Gy X-rays. Fluorescence microscopy images were

taken following co-immunofluorescence staining and DNA counterstain-

ing with DAPI. Each image is 35 mm wide. (B) Time lapse fluorescence

microscopy images of one HeLa cell following transient transfection

with a mammalian expression vector encoding a green fluorescent

protein-53BP1 fusion protein. Pictures were taken using a live cell

imaging microscope at 3.5 to 6.5 h post 2 Gy X-irradiation. Each pic-

ture is 21 mm wide. (C) Time-course of gH2AX induction in UTSCC14

cells following treatment with 100 nM gemicitabine, a nucleoside ana-

logue which stalls DNA replication. Pan-nuclear gH2AX staining is

observed in an increasing fraction of cells over time, rather than distinct

subnuclear foci as in the case of X-rays. Each image is 190 mm wide.

(D) Colocalizing gH2AX and 53BP1 foci in peripheral human blood

lymphocytes 24 h following 4 Gy X-irradiation ex vivo. Each image is

40 mm wide.
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errors, and cellular metabolism. One relatively rare but

very potent type of lesion is the DNA double strand break

(DSB). DSBs occur when the two complementary strands

of the DNA are broken within a distance of a few base

pairs. This leads to the dissociation of the two DSB ends,

potentially resulting in erroneous repair and recombina-

tion with other DNA fragments. DSBs can be induced by

exogenous agents such as ionizing radiation, chemicals,

anti-cancer drugs and environmental stress or endoge-

nously as a result of reactive oxygen species (ROS) pro-

duced during normal cell metabolism or when DNA

replication forks collapse. DSB formation may also be

Fig. 2. X-ray-induced gH2AX foci in tissue sections. (A) Chromogenic

staining for gH2AX (brown) with hematoxylin counterstaining in 5 mm

sections of formalin-fixed paraffin-embedded UTSCC14 xenograft

tumours. Each image is 54 mm wide. (B) Immunofluorescence staining

for gH2AX (green) and DNA counterstaining with DAPI (blue) in frozen

10 mm sections of murine liver and spleen. Images show maximum pro-

jections of z-stacks obtained using a fluorescence microscope with struc-

tured illumination attachment. Each image is 63 mm wide. (C)

Chromogenic staining for gH2AX (brown) with hematoxylin counterstain-

ing in 5 mm sections of different formalin-fixed paraffin-embedded murine

tissues. Images in the upper two rows are each 310 mm wide, in the bot-

tom two rows 42 mm.
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seen in cells treated with topoisomerase inhibitors, upon

replication of DNA molecules affected by lesions (such

as SSBs), during V(D)J recombination and class switch

recombination in lymphocytes, meiotic recombination in

germ cells, mating type switching in yeast and also as a

consequence of DNA fragmentation in cells undergoing

apoptosis.

Overwhelming evidence supports a strong, quantitative

correlation between gH2AX foci formation and DNA

double-strand break induction following ionizing radiation

exposure, based on absolute yields and distributions

induced per unit dose [Rothkamm and L€obrich, 2003;

Sedelnikova et al., 2003, Barnard et al., 2013], their mod-

ulation by microenvironmental factors such as oxygen

concentration [Olive and Banath, 2004; Wardman et al.,

2007] and by genetic factors such as mutations in relevant

DNA repair genes [e.g. Rothkamm and L€obrich, 2003;

Rothkamm et al., 2003; K€uhne et al., 2004; Riballo et al.,

2004]. As radiation-induced gH2AX foci tend to co-

localise very reliably with 53BP1 and ATM-pS1981,

these other DNA damage response proteins can be used

as alternative or, in situations where accuracy is of crucial

importance, as additional markers of double-strand breaks

through co-immunostaining [Ward et al., 2003; Bekker-

Jensen et al., 2006; Rothkamm et al., 2007; Horn and

Rothkamm, 2011; Ojima et al., 2011]. Nonetheless, quan-

titative and spatio-temporal inconsistencies in the relation-

ship between foci and double-strand breaks and

heterogeneous foci dynamics within the nucleus have

been reported and some of the underlying issues have

been explored [Kinner et al., 2008; Costes et al., 2010;

Barnard et al., 2013; Chiolo et al., 2013], at least for ion-

izing radiation. These include the heterogeneous distribu-

tion of the H2AX histone in the nucleus [Bewersdorf

et al., 2006], the delay between DSB induction and the

formation of microscopically visible foci [Rothkamm and

Horn, 2009], pan-nuclear H2AX phosphorylation and

MDC1 recruitment following localised induction of com-

plex DNA damage [Meyer et al., 2013], expulsion of

DNA damage foci from heterochromatin [Jakob et al.,

2011], and the possible coalescence of multiple foci in

close proximity into one [Neumaier et al., 2012]. The sit-

uation is even less clear for “spontaneous” foci and those

triggered by other stimuli, whether intrinsic (e.g. replica-

tion stress, aging, oxidative damage, DNA metabolism),

or extrinsic (e.g. ultraviolet radiation, chemical expo-

sures). Most genotoxins induce foci only as secondary

events, when unrepaired DNA lesions cause replication

forks to stall and/or collapse in cells passing through S

phase following exposure. Consistent with this notion,

foci induction has been reported to be delayed, peaking

only several hours after exposure to agents such as UV

light and alkylating agents [Staszewski et al., 2008; Zhao

et al., 2014] and not always showing the distinct pattern

of individual spots seen for ionizing radiation-induced

DNA damage foci, but instead sometimes a more homog-

enous, pan-nuclear signal (see e.g. Fig. 1C). It is impor-

tant to note that the extent of such secondary foci

induction may be affected by a number of factors, includ-

ing the cell cycle distribution at the time of exposure, cell

cycle checkpoint control, the efficiency of DNA repair

pathways, i.e. nucleotide or base excision repair, that con-

tribute to the removal of lesions prior to S phase entry,

and the functionality of relevant DNA damage sensing

and signaling pathways that are involved in foci forma-

tion. Also it is not absolutely clear whether such second-

ary foci do in fact always reflect the presence of DSB.

For example, ageing haematopoietic stem cells have been

reported to harbor replication stress-induced nucleolar

gH2AX foci which persist owing to ineffective H2AX

dephosphorylation by mislocalized PP4c phosphatase

rather than ongoing DNA damage [Flach et al., 2014].

There are continuing discussions over the biological

meaning and interpretation of residual DNA damage foci

which may persist for many days following high [Ahmed

et al., 2012] as well as low dose irradiation [Rothkamm

and L€obrich, 2003]. Several different mechanisms have

been discussed which may contribute to this effect,

including delayed or ineffective gH2AX dephosphoryl-

ation, inducible repair that is lacking at low doses but can

be stimulated by treatment with hydrogen peroxide

[Grudzenski et al., 2010]; the induction of secondary,

bystander-type foci which persist for much longer than

directly induced foci [Ojima et al., 2011] and accumula-

tion of DNA damage foci in senescent cells [Sedelnikova

et al., 2004] where they may be associated with telomeres

[Nakamura et al., 2009; Fumagalli et al., 2012; Hewitt

et al., 2012]. However, there is still no proof that these

persistent foci do indeed reflect unrepaired DSB. The lack

of a reliable, alternative assay for the sensitive DSB

detection means that this ambiguity is likely to remain

unresolved for the foreseeable future, although promising

complementary DSB detection methods have been

reported recently [Shee et al., 2013].

Despite all these potential flaws and caveats, DNA

damage foci, and especially gH2AX, have already been

used extensively as markers of DNA damage or repair in

human population studies (reviewed in [Valdiglesias

et al., 2013]), and this trend will most certainly continue

in the coming years.

DNADOUBLE-STRAND BREAK REPAIR

Because of their high potential impact on genome stabil-

ity and cell survival, several complex pathways have

evolved for repairing DSB. Accordingly, DSB repair defi-

ciency has been associated with chromosomal breaks and

translocations resulting in cell death, cell transformation and

tumorigenesis, developmental defects, neurodegeneration,
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immunodeficiency, radiosensitivity, sterility, and cancer dis-

position [Polo and Jackson, 2011]. The two main mecha-

nisms for repairing DSBs are homologous recombination

(HR) and nonhomologous end-joining (NHEJ) [Chapman

et al., 2012; Goodarzi and Jeggo, 2013; Davis et al., 2014]

which complement each other. HR involves a complex

machinery to resect DSB ends to produce long single-

stranded DNA overhangs, search for sequence homologies,

and exchange strands with an intact sister chromatid that

serves as a template for repair. On the other hand, NHEJ

involves three steps which result in the ligation of two

DNA ends in close proximity: (a) recognition of break ends

and their binding by the Ku subunit of the DNA-dependent

protein kinase (DNA-PK), (b) removal of nonligatable ter-

mini, and (c) joining of the ends by DNA ligase IV, sup-

ported by the scaffold proteins XLF and XRCC4. These

pathways are evolutionary conserved in eukaryotes, but their

significance differs between species and changes during the

cell cycle. For example, HR is favored in simple eukaryotes,

such as yeast and is generally more active during or after

DNA replication. On the other hand, NHEJ is the dominant

pathway in mammals and is active throughout the cell

cycle, whereas HR is active only in the S- and G2-phases

[Rothkamm et al., 2003; Kakarougkas and Jeggo, 2014]

when a sister chromatid is available as a template

for recombination and DSB repair is assisted by the cohesin

complex [Nasmyth and Haering, 2009; Bauerschmidt et al.,

2010].

Over the past decade, a number of alternative DSB

repair mechanisms were identified. These include alterna-

tive end joining pathways (or backup NHEJ, in contrast

to conventional DNA-PK-dependent NHEJ) which operate

independently of the core-end joining factors such as

DNA-PK, XRCC4, and DNA ligase IV. They are sus-

pected to be more error-prone than DNA-PK-dependent

NHEJ [Mladenov and Iliakis, 2011; Schipler and Iliakis,

2013]. PARP-1, DNA ligases 1 and 3 as well as XRCC1

have been found to contribute to backup end joining. Fur-

thermore, single-strand annealing and break-induced repli-

cation may contribute to DSB repair, especially in

association with replication. Both of these processes have

long been characterised in yeast but have recently also

been observed in mammalian cells [Constantino et al.,

2014; Kuhar et al., 2014] and may contribute to copy

number variation following irradiation [Gribble et al.,

2013; Arlt et al., 2014]. These alternative DSB repair

processes are thought to gain special importance in

tumour cells, in which the canonical DNA damage signal-

ing and repair pathways are often disturbed.

The temporal and spatial dynamics of proteins accumu-

lating to form foci in response to DNA damage, and their

resolution during repair, have been studied in great detail

and have improved considerably our understanding of the

genetic, epigenetic, and biochemical basis of mammalian

DNA double-strand break repair pathways and their regu-

lation [Ciccia and Elledge, 2010; Lukas et al., 2011;

Scully and Xie, 2013; Smeenk and van Attikum, 2013;

Goodarzi and Jeggo, 2013; Kakarougkas and Jeggo, 2014;

Daley and Sung, 2014; Gupta et al., 2014; Panier and

Boulton, 2014]. Apart from the cell cycle position, dis-

cussed above, DSB repair pathway choice and the compo-

sition of DNA damage foci may also be influenced by the

nature of DSB ends as well as by the localisation of the

DSB within the nucleus and its chromatin context.

The chemical nature of DSB ends can have a major

impact on their processing [Aparicio et al., 2014], with

NHEJ being inhibited by modified/damaged DNA ends,

but also by those with extended single-stranded DNA

overhangs. A range of specialised enzymes act to process

DNA ends to restore them to a ligatable state and at the

same time determine the choice of repair pathway to be

utilized. These include polynucleotide kinase 3’ phospha-

tase (PNKP) [Jilani et al., 1999], Ku itself which can

excise nucleotide damage in the vicinity of DNA ends

[Roberts et al., 2010], the neurogenerative disease protein

aprataxin which removes adenylate groups [Ahel et al.,

2006] and the phoshodiesterases TDP1 and 2 which

remove DNA topoisimerase adducts [Cortes Ledesma

et al., 2009]. In addition, damaged DNA ends can be

trimmed by endonucleases such as Artemis or Metnase

[Mohapatra et al., 2013], the Aprataxin and PNK-like fac-

tor (APLF) [Kanno et al., 2007], the RecQ helicases

WRN and BLM in cooperation with the helicase/endonu-

clease DNA2 [Sturzenegger et al., 2014] and the MRE11/

RAD50/NBS1 (MRN)/CtIP complex [Neale et al., 2005],

to make break ends ligatable. Especially the MRN/CtIP

complex has been implicated in DSB sensing, initiating

the resection of the 5’-DNA strand to produce 3’-single-

strand DNA overhangs and facilitate the search for

sequence homology required for homology-dependent

repair. The distinct endo- and exonuclease activities of

MRE11 generate 3’ overhangs [Shibata et al., 2014] once

NBS1 has recruited the endonuclease CtIP. The activities

of MRE11, RAD50, CtIP, and the nucleases EXO1 and

DNA2—which perform the bulk of end-resection required

for HR—are all regulated by the DNA damage kinases

ATM and ATR [Symington and Gautier, 2011; Jasin and

Rothstein, 2013]. Not surprisingly, DSBs that are accom-

panied by additional lesions in close vicinity of the break

ends, so-called complex DSBs which are frequently

induced by densely ionizing radiations such as alpha par-

ticles, are much more likely to be processed by end-

resection than “simple” DSBs [Yajima et al., 2013; Aver-

beck et al., 2014]. Radiation quality therefore influences

repair pathway choice.

The position of a DSB within the nucleus also affects

how it is repaired. DSBs located at the nuclear mem-

brane, but not at nuclear pores or in the centre of the

nucleus, were shown not to activate the canonical DNA

damage response and to be repaired by alternative end-

Environmental and Molecular Mutagenesis. DOI 10.1002/em

DNADamage Foci 495



joining [Lemâıtre et al., 2014]. Recent electron micro-

scopic studies have provided a more detailed picture of

the spatial arrangements of repair proteins within foci

structures [Lorat et al., 2012]. DNA damage signaling

and foci dynamics differ significantly for DSBs located in

different chromatin environments such as hetero- and

euchromatin [Goodarzi et al., 2010; Chiolo et al., 2013]

and are also affected by the transcriptional status

[Aymard et al., 2014]. Furthermore, there is some evi-

dence to suggest that radiation-induced DSB, and thus

foci, may move and merge with each other in repair

domains if they are located within 1 to 2 mm [Neumaier

et al., 2012]. This notion implies a saturation of foci

induction with increasing dose, resulting in an underesti-

mation of true DSB yields at high doses. It also provides

a mechanistic framework for the formation of chromo-

somal rearrangements caused by DSB misrejoining [Vad-

havkar et al., 2014].

Interestingly, evidence from physical assays for gross

DSB rejoining, such as pulsed-field gel electrophoresis,

suggests that some of the key proteins used in DNA dam-

age foci assays, i.e. gH2AX, 53BP1, and ATM, are

expendable for the bulk repair of most DSBs induced by

ionizing radiation, with only a small fraction of repair

events appearing to require these factors [K€uhne et al.,

2004; Riballo et al., 2004]. This surprising finding illus-

trates the high level of redundancy and wide range of

back-up options available to the cell. On the other hand,

the severe cellular radiosensitivity as well as the signifi-

cant developmental and health consequences that are

encountered at an organism level in the absence of one of

these proteins demonstrate the crucial importance of a

tightly regulated hierarchy of DNA damage response

functions which is required to minimise the risk of

adverse outcomes from erroneous DSB repair. A study

using nonphosphorylatable H2AX derivatives has shown

that, whilst a wide range of genotoxic agents induce

extensive H2AX phosphorylation, this response is impor-

tant for cell survival mainly for agents that directly

induce DSBs [Revet et al., 2011]. Therefore, the induc-

tion of gH2AX may serve as a surrogate marker of DNA

damage in general but may not always be associated with

DSBs. Functionally, however, gH2AX seems to contrib-

ute much more critically to the response to DSBs than to

other DNA lesions, and specifically to a certain subset of

DSBs that also require ATM, MRE11, NBS1, 53BP1, and

Artemis for their repair [Riballo et al., 2004].

The points above and the fact that H2AX phosphoryla-

tion is dispensible for initial DSB sensing [Celeste et al.,

2003], DNA damage signaling, and bulk DSB repair

[Yuan et al., 2010] should be kept in mind when quanti-

fying and interpreting DNA damage foci as markers of

DSBs. This is especially pertinent in the case of residual

foci which, in some studies, have been reported to persist

for many days (see section on DNA double-strand

breaks). It should always be kept in mind that gamma-

H2AX foci represent dynamic events of continued phos-

phorylation by the DNA damage kinases ATM, DNA-PK,

and ATR and dephosphorylation by a range of phospha-

tases. Just because foci persist this does not necessarily

mean that the underlying DSBs are not repaired, just that

the foci have not yet been dephosphorylated.

RAD51, on the other hand, is the central player in HR

and thus of crucial importance for conventional recombi-

nation processes and in fact essential, as RAD51 null

cells accumulate DSBs during replication and die [Tsu-

zuki et al., 1996; Sonoda et al., 1998]. The function of

RAD51 in HR-dependent DSB repair has been reviewed

in [Krejci et al., 2012; Jasin and Rothstein, 2013]. Briefly,

HR requires the extensive resection of DNA ends to gen-

erate 3’ single strand overhangs (see above) which then

form a nucleoprotein filament with the mammalian RecA

homolog RAD51, supported by mediator proteins, mainly

BRCA2, which promote RAD51 loading by displacing

tightly bound replication protein A (RPA) from single-

stranded DNA. RAD51 filament formation blocks alterna-

tive pathways including single-strand annealing and alter-

native end-joining in favor of more faithful HR. The

RAD51 filament invades an intact template duplex with

homologous sequence, such as the sister chromatid in S

and G2 phase cells, and the invading 3’ end is used as a

primer for DNA synthesis. The newly synthesized strand

is then displaced by DNA helicases, anneals back to its

original complementary strand, and then serves itself as a

template for fill-in synthesis on the other strand, followed

by ligation. In situations where both DNA overhangs of

the DSB undergo strand invasion, the resulting double

Holliday junctions can be resolved in a number of differ-

ent ways which may or may not lead to cross-over events

[Jasin and Rothstein, 2013].

It is tempting to equate Rad51 foci formation with

homologous recombinational repair functionality. Whilst

such a connection has been confirmed in many cases, rep-

lication inhibition experiments have demonstrated that a

deficiency in RAD51 focus formation, such as that

observed in rad51d null mutants, is not necessarily associ-

ated with increased cellular sensitivity to agents that

block replication [Urbin et al., 2012]. Conversely, Rad51

foci formation and cell death in the absence of DNA

damage has been reported in Rad51-overexpressing cells

following treatment with the RAD51-stimulatory com-

pound RS-1 [Mason et al., 2014].

In summary, a highly complex picture emerges, in

which the choice of DSB repair pathway is made sepa-

rately for each DSB, depending on a combination of cri-

teria and regulated by a functional network of protein

phosphorylation and ubiquitilation in a chromatin context.

It is important to emphasise that the significance and

functional relevance of DNA damage foci in DSB repair

is not always clear, especially in the case of agents that
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induce primarily non-DSB lesions [Revet et al., 2011;

Cleaver, 2011]. More work is certainly needed to improve

our understanding of these issues. Whilst foci assays offer

glimpses into the underlying dynamics, decoding the

nature of the individual repair event and its consequences

for the fate of the cell remains a major challenge.

RADIATION EXPOSURE ASSESSMENT

DNA damage foci, and especially gH2AX foci in

peripheral white blood cells, are promising biomarkers in

biological dosimetry where radiation exposures need to

be estimated retrospectively [Rothkamm and Horn, 2009;

Redon et al., 2010b, Roch-Lefevre et al., 2010; Horn and

Rothkamm, 2011; Horn et al., 2011]. This is largely due

to the strong and reproducible dose response of radiation-

induced foci which enables foci yields to be converted to

dose using a calibration curve. Whilst it must be remem-

bered that the signal decays quickly as foci are lost as a

consequence of DSB repair, thus requiring time-specific

calibration data, the assay is still useful for biodosimetry

for up to several days post exposure [Redon et al., 2010b;

Horn et al., 2011; Moroni et al., 2013]. Interestingly, the

lack of foci loss at very low doses of X-rays, reported for

primary human fibroblast cultures and murine tissues

[Rothkamm and L€obrich, 2003; Grudzenski et al., 2010;

Ojima et al., 2011], has not been observed in peripheral

blood lymphocytes which instead show a rapid decline

down to pre-exposure foci levels (unpublished data). Due

to the highly dynamic nature of the signal, foci-based

dose estimations become very difficult when the time of

exposure is unknown. This issue can potentially be

addressed by multiplexing with a complementary end-

point with different kinetics, such as apoptosis induction

[Horn et al., 2013]. Under conditions where baseline lev-

els of DNA damage foci are very low and exposures are

planned, enabling well-defined, short postexposure times,

the assay can detect doses in the milligray range. An

ideal application is therefore the assessment of patient

exposures and the individual DNA damage response dur-

ing diagnostic and interventional radiological procedures

[L€obrich et al., 2005; Rothkamm et al., 2007; Beels et al.,

2009; Grudzenski et al., 2009; Kuefner et al., 2009; Kuef-

ner et al., 2010; Beels et al., 2012] as well as during

internal [Lassmann et al., 2010; Doai et al., 2013] and

fractionated external beam radiotherapy [Sak et al., 2007;

Fleckenstein et al., 2011; Bakkenist et al., 2013; El-

Saghire et al., 2014; Woolf et al., 2014]. The growing

interest in combined treatment modalities and personal-

ised therapies will create an ever increasing demand for

reliable markers of individual exposure and effect, which

DNA damage foci assays will help to address.

Apart from their ability to detect low dose exposures,

the DNA damage foci assays also provide information

about the homogeneity of the exposure. Whereas uniform,

total body exposures to sparsely ionizing radiation induce

DSBs randomly in all cells of the body, localised expo-

sures such as those associated with a partial body CT

scan, radiotherapy prescribed to target a localised treat-

ment volume or in fact most accidental radiation expo-

sures cause severe DNA damage only in a fraction of

cells. This information can be extracted from foci distri-

butions scored in blood samples using simple mathemati-

cal models [Rothkamm et al., 2007; Horn et al., 2011]

and can be used to estimate how much of the body was

spared from the exposure, a vital piece of information

when managing patients following a severe radiation acci-

dent [IAEA, 2011]. The applicability of DNA damage

foci assays to rapid biodosimetry in large scale radiation

accident scenarios has recently been tested in a number

of international laboratory intercomparison exercises

[Rothkamm et al., 2013a,b; Ainsbury et al., 2014; Bar-

nard et al., in press], which have highlighted large vari-

ability in assay performance between participating

laboratories. High throughput sample processing and anal-

ysis methods have been reported which are aimed at

adapting the assay to support rapid radiological triage

[Turner et al., 2011; Rothkamm et al., 2012a; Moquet

et al., 2014]. Additional effort on standardisation and reg-

ular performance testing will be required to fully establish

DNA damage foci assays as routine biodosimetric tools.

GENOTOXICITY TESTING

In addition to its well-established role in radiobiological

research and radiation biodosimetry, gH2AX is increas-

ingly employed as a biomarker for DSB in environmental,

occupational and clinical toxicology [Watters et al., 2009;

Khoury et al., 2013; Geric et al., 2014; Nikolova et al.,

2014]. As an example, gH2AX foci have been used as an

indicator of DSB induced by cigarette smoke following in

vitro exposure of human epithelial cells [Albino et al.,

2004; Toyooka and Ibuki, 2009] and in peripheral blood

mononuclear cells of active smokers [Ishida et al., 2014].

The latter finding suggests that cigarette smoke may induce

DSB not only indirectly as secondary events caused by

replication stalling and collapse at the site of single-

stranded DNA lesions, but also directly in a replication-

independent manner. Studies of cell cycle-dependence

[Rothkamm et al., 2003; Beucher et al., 2009; Bauersch-

midt et al., 2010], the use of pathway-specific foci assays

(e.g. Rad51 analysis to test for the involvement of homolo-

gous recombination, see below) and analysis of foci induc-

tion in different genetic backgrounds such as mutants

defective in different DNA repair pathways can provide

important mechanistic insights in genotoxicity testing and

are therefore prime candidates for inclusion in the battery

of follow-up tests for substances that tested positive in the
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Ames/E. coli bacterial mutagenicity assay [Aardema,

2013]. Multiplexing with other established genotoxicity

markers such as the micronucleus test has also been con-

sidered [Bryce et al., 2014]. Moreover, the applicability of

foci assays not only to cell cultures but also to tissue sec-

tions following in vivo exposure [Qvarnstrom et al., 2004;

Somaiah et al., 2012; Rothkamm et al., 2012b] opens up

exciting opportunities to produce ‘genotoxicity maps’

across the different organs and cell types of the body.

However, it is important to keep in mind that, whilst DSBs

tend to be closely associated with DNA damage foci in

most situations, there are cases where one may be present

without the other.

Obviously, the same concepts and possibilities apply to

the use of foci assays as pharmacodynamic tools for char-

acterising anti-cancer therapies [Redon et al., 2010a],

combinations of therapeutics [Sak et al., 2009] or DNA

damage response modifiers, whether used alone or in

combination with DNA-damaging treatments [e.g. Lim

et al., 2014; Srivastava et al., 2014; Burdak-Rothkamm

et al., 2015b]. In cells undergoing apoptosis H2AX phos-

phorylation occurs in an intranuclear shell. This response,

which microscopic analysis can easily distinguish from

foci formation, may serve as an additional pharmacody-

namic biomarker for anticancer therapies [Solier and

Pommier, 2014].

INDIVIDUAL RESPONSE/SENSITIVITY/SUSCEPTIBILITY

It has long been known that DNA damage foci assays

can flag up severe defects in DSB repair in syndromic

patients, such as those with ligase IV syndrome, Ataxia

telangiectasia, Nijmegen breakage syndrome, radiosensitive

severe combined immunodeficiency, etc. More recently,

DSB repair measured using DNA damage foci in ex vivo-

or in vivo-irradiated peripheral blood lymphocytes has also

been proposed as a predictive marker of individual risk of

oral mucositis in head and neck cancer radiotherapy

patients [Fleckenstein et al., 2011; Goutham et al., 2012;

Li et al., 2013]. Similarly gH2AX foci levels have been

associated with the risk of acute [Djuzenova et al., 2013;

Mumbrekar et al., 2014] and late normal tissue reactions in

breast cancer radiotherapy patients [Chua et al., 2011;

Henriquez-Hernandez et al., 2011; Chua et al., 2014], for

late toxicity in prostate cancer patients [van Oorschot

et al., 2014] and for acute radiotherapy toxicities in paedi-

atric cancer patients [R€ube et al., 2010]. However, gH2AX

foci results had no predictive power for late normal toxic-

ity in gynaecological cancer radiotherapy [Werbrouck

et al., 2010] or in prostate brachytherapy [Olive et al.,

2008], and no genetic influence was observed on individual

gH2AX signaling/DSB repair capacity in a nonclinical

study involving 198 twins [Garm et al., 2013].

More general uses of the DNA damage foci-based

functional assays in translational cancer research

[Ivashkevich et al., 2012] and in the clinic are being

increasingly explored [Redon et al., 2012]. The specific

utility of gH2AX as a prognostic biomarker in lung can-

cer has recently been proposed [He et al., 2013; Mat-

thaios et al., 2013; Chatzimichail et al., 2014]. DNA

damage foci assays have been used to study the relation-

ship between DNA repair and radiotherapy fraction size

sensitivity [Somaiah et al., 2012, 2013]. RAD51 foci-

based functional assays are being developed to profile HR

repair pathway activity in tissue biopsies and enable the

selection of patients with HR-deficient tumours for spe-

cific treatments such as PARP inhibitors [Mukhopadhyay

et al., 2010; Shah et al., 2014; Naipal et al., 2014].

NONTARGETED FOCI

A radiation-induced bystander effect (RIBE) was first

described as a radiation-induced DNA damage response

in cells adjacent to directly targeted cells, manifesting as

increased yields of micronuclei, sister chromatid

exchanges, apoptosis, mutations, genomic instability and

neoplastic transformation [Nagasawa and Little, 1992;

Azzam et al., 1996; Watson et al., 2000; Zhou et al.,

2000; Bowler et al., 2006]. DNA damage in bystander

cells is thought to be initiated by elevated reactive oxy-

gen species (ROS) production [Tartier et al., 2007; Chen

et al., 2008]. Subsequent intra- and intercellular signaling

events between targeted and nontargeted cells, including

the release or activation of nitric oxide [Shao et al.,

2003], TGF-b [Shao et al., 2008], cyclooxygenase-2

(COX-2), nuclear factor-kappa B (NF-kappa B), and

mitogen-activated protein kinase (MAPK) [Zhou et al.,

2008], result in sustained ROS generation in distant cells,

causing genotoxic stress. The initial ROS-induced DNA

damage in bystander cells, when present in S-phase,

causes replication fork stalling and leads to secondary

production of DNA double-strand breaks (DSBs) which

are thought to underlie the formation of subnuclear foci

of gH2AX [Sokolov et al., 2005; Burdak-Rothkamm

et al., 2007; Han et al., 2007] and 53BP1 [Tartier et al.,

2007; Burdak-Rothkamm et al., 2008] in bystander cells.

These bystander foci occur predominantly in S-phase

cells and activate ATM in an ATR-dependent manner

[Burdak-Rothkamm et al., 2007, 2008]. The observation

of bystander BRCA1 and FANCD2 foci suggests an acti-

vation of the Fanconi anaemia (FA)/BRCA DNA damage

response pathway [Burdak-Rothkamm et al., 2015a], a

key pathway in the resolution of stalled replication [Ven-

kitaraman, 2004], the functional impairment of which has

been linked to genomic instability [Howlett et al., 2005].

The RIBE can potentially be interpreted as part of a

general genotoxic stress response [Spitz et al., 2004]. In

this context, the accumulation of gH2AX foci was

observed in other settings which are characterized by the
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induction in distant proliferating tissue was reported as

manifestation of a systemic tumour-induced bystander

effect caused by the presence of a malignant tumour

[Redon et al., 2010c; Martin et al., 2011]. In aging mice

and in senescent cell cultures, the accumulation of crypto-

genic gH2AX foci was observed which are thought to

represent unrepairable DSBs caused by persistent geno-

toxic stress [Sedelnikova et al., 2004]. In pre-cancerous

tissues it was shown that increased numbers of DNA

double-strand breaks demonstrated by 53BP1 foci accu-

mulation were associated with DNA replication stress

[Gorgoulis et al., 2005]. Furthermore, it has been estab-

lished more recently that nontargeted foci as well as

(drug) targeted foci may be generated by transcriptional

activity [Sordet et al., 2009; Dickey et al., 2012; Alagoz

et al., 2013], with transcriptional R loops likely to play a

key role in genomic instability [Gan et al., 2011; Aguilera

and Garcia-Muse, 2012; Skourti-Stathaki and Proudfoot,

2014]. DNA damage that arises in nondividing tissues

may lead to human pathologies such as neurological dis-

orders or heart failure. Detection of repair foci in these

tissues may serve as a tool to better understand the origin

of such pathologies.

In conclusion, DNA damage foci have been used to

monitor and quantify bystander effects and nontargeted

responses in a variety of settings. In particular gH2AX

foci are now widely used as a biomarker for nontargeted

and systemic genotoxic responses.

CONCLUSIONS

The discovery of DNA damage foci has opened a new

dimension to the field of DNA damage signaling. Analy-

sis of the spatiotemporal dynamics of DSB induction and

repair in situ or even in live cells has now become a

standard method in many different fields. Whilst there is

huge scope for DNA damage foci assays to be exploited

further as functional biomarkers in cancer therapy trials,

radiation dose assessment, and genotoxicity testing, it will

require stringent assay standardization and strict quality

control measures to ensure good reproducibility and con-

sistency, especially when used in multicenter settings.

Beyond the technical issues, there are still a number of

fundamental gaps in our understanding of the meaning

and significance of DNA damage foci, especially in situa-

tions where foci form as secondary events as a conse-

quence of the cellular response to non-DSB damage.

However, it is exactly in these areas of general genotoxi-

cology and cellular stress responses that these sensitive

functional markers have the potential to provide important

insights into the molecular choreography that links DNA

damage, repair, chromatin dynamics, replication, and cell

cycle control with wider tissue-level responses.
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