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Abstract
The Bayesian framework has been shown to be very useful in cytogenetic dose 
estimation. This approach allows description of the probability of an event in 
terms of previous knowledge, e.g. its expectation and/or its uncertainty.

A new R package entitled radir (radiation inverse regression) has 
been implemented with the aim of reproducing a recent Bayesian-type dose 
estimation methodology. radir adopts the method of dose estimation under 
the Poisson assumption of the responses (the chromosomal aberrations counts) 
for the required dose-response curve (typically linear or quadratic).

The individual commands are described in detail and relevant examples of 
the use of the methods and the corresponding radir software tools are given. 
The suitability of this methodology is highlighted and its application encouraged 
by providing a user-friendly command-type software interface within the R 
statistical software (version 3.1.1 or higher), which includes a complete manual.

Keywords: cytogenetic dosimetry, Bayesian methods, inverse regression,  
R software, radir package, radiation, dose estimation
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1. Introduction

The classical methods for dose estimation in radiation cytogenetics are well established and 
described in detail in the manual of the International Atomic Energy Agency (IAEA) [1]. 
First, calibration data (generally yields of chromosome aberrations in blood lymphocytes) are 
collected and fitted to a linear or quadratic model, the coefficients of which are then used to 
calculate doses. The Poisson model is used to describe the uncertainty on the yield of aber-
rations, and this is combined with uncertainty on the fitted calibration coefficient(s) using 
standard methodology in order to give the total uncertainty associated with the estimated dose.

In the classical or ‘frequentist’ framework the coefficients of the calibrated dose-response 
curve are considered ‘fixed’, thus providing an estimate of radiation dose and associated con-
fidence limits using standard likelihood methods. Therefore, assignment of a probability to an 
event is based solely on the observed frequency of occurrence of the event.

Alternatively, the Bayesian approach considers the parameters, for instance the dose-
response curve coefficients in this case, random variables for which previous information 
could exist. This information could come from previous analysis in the field literature or even 
from the experts’ opinion/knowledge. The newly collected data is combined with this prior 
information to produce a posterior model.

The Bayesian inference uses distributions for all the parameters, leading to an important 
advantage: the uncertainty of the system is an intrinsic part of the analysis. A review of these 
methods can be found in [2]. Bayesian methods in cytogenetic biodosimetry give the estima-
tion of the absorbed dose by an individual in a form of random variable distribution, called the 
calibrative dose density [3].

Some specific software has been developed to fit dose-response curves and to estimate the 
dose absorbed by an individual; e.g. CABAS [4], DoseEstimate [5] and BioDoser [6]. There 
is also one recent program, CytoBayesJ [7], which provides some basic software tools for 
Bayesian analysis of cytogenetic radiation dosimetry data.

In this paper we present a new R statistical software package which implements the Poisson 
models developed in [8]. These models involve Bayesian-type inverse regression. They use 
dose-effect calibration curves estimated by the frequentist approach.

This methodology collects the prior information of the yield of chromosomes per cell (the 
prior population mean) from the dose-effect calibration curve in an univariate parameter by 
means of the delta method. This prior distribution is assumed normal (under some constraints) 
or gamma distributed and the calibrative dose density results in terms of the probability func-
tions of the Hermite or negative binomial distributions.

2. The radir R software package

The software introduced in this work has been written in the R programming language [9], 
which is becoming more popular in the cytogenetic biodosimetry context in recent years 
because of its availability; it can be freely downloaded from http://cran.r-project.org/ and used 
on the most common operating systems. In fact, an R script for fitting dose-response curves 
written by Braselmann was included in [1]. In addition, the hermite R package version 1.0.1 
[10] has been utilized for the management of the Hermite distribution. The general workflow 
of radir package is summarized in section 2.2.

A video tutorial has been prepared with the aim of helping radir users in the installation 
and general usage of the R statistical software and, in particular, the radir package. It can be 
found in the next open access link, http://polimedia.uab.cat/#v_592.
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2.1. Features of radir package

In version 1.0, already available from http://cran.r-project.org/src/contrib/radir_1.0.tar.gz, the 
following tools are included:

 • Calculation of the calibrative dose density for a given
 * expression of the dose-response curve;
 * hyperparameters set;
 * estimate of the parameter set;
 * variance–covariance matrix of the estimation;
 * total number of cells examined;
 * number of chromosomal aberrations;
 * prior distribution of the chromosomal aberration mean: normal or gamma;
 * prior distribution of the absorbed dose: uniform or gamma;
 * parameters of the distribution of the dose prior.
 • Summary statistics of the calibrative dose density: best estimate, expected value, standard 

deviation and the 95% highest posterior density (HPD) interval, defined as the shortest 
range that contains the 95% (or the required percentage) region of the probability density.

 • Calculation of the HPD interval for a given credible region.
 • Calculation of the probability between two given doses.
 • Plots of the
 * calibrative dose density;
 * HPD interval for a given credible region;
 * probability between two given doses;
 * cumulative dose distribution function.

2.2. radir package workflow

The calibrative density is computed explicitly for the Poisson model in [8], which is the most 
common situation and is also the case covered by the radir package. The software takes 
as inputs laboratory information such as the dose-response curve, the maximum likelihood 
estimates of its parameters, the variance–covariance matrix and the mean prior distribution, 
which can be normal or gamma, together with patient information such as the number of cells 
examined, chromosomal aberrations counts, and the prior dose distribution, which can be uni-
form or gamma. From this input data, the calibration dose density is calculated and summary 
statistics, probability between two given doses, high posterior density intervals and several 
plots can be obtained. This workflow is summarized in figure 1.

2.3. Calibrative dose density calculation

The calculation of the calibrative density is based on the fact that the likelihood function of 
the data coming from the patient is proportional to a Poisson probability function evaluated 
at the total number of chromosomal aberrations. Then, the calibrative density remains pro-
portional to the prior dose density multiplied by a probability function of a mixed-Poisson 
distribution evaluated at the total number of chromosomal aberrations. The nature of the 
mixed-Poisson distribution depends on the mean prior distribution that acts as the ‘mix-
ing’ distribution. When the mean prior is gamma (the default case for the radir package) 
it leads to a negative binomial distribution, and for the normal density option it leads to 
the Hermite distribution. The details of all the process and methodology are thoroughly 
described in [8].
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The first step is to compute the calibrative dose density, by means of the function dose.
distr().

A call to this function might be

dose.distr(f, pars, beta, cov, cells, dics, m.prior, d.prior, 
prior.param, stdf)

The description of these arguments can be summarized as follows:

 • f: Dose-response function, as an expression. Must be differentiable in the domain of 
parameters.

 • pars: string vector containing the parameters in f.
 • beta: Estimates of the parameters.
 • cov: Variance–covariance matrix of estimates beta.
 • cells: Patient information: number of cells examined.
 • dics: Patient information: observed number of aberrations.
 • m.prior: String containing the prior distribution of the mean. In the current version of 

the package, it can be gamma (the default value) or normal.
 • d.prior: String containing the prior distribution of the dose. In the current version of 

the package, it can be gamma or uniform (the default value).
 • prior.param: Vector of length 2 containing the parameters of the distribution of the 

dose prior. Its default value is the non-informative prior. If d.prior is a gamma dis-
tribution, the mean and standard deviation should be given, otherwise the function will 
return an error.

Figure 1. radir package workflow.
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 • stdf: Approximated standard deviation factor. This input is useful to control the ends of 
the calibrative density; i.e. in case the tails of the calibrative dose density are very long 
this value could be reduced, or vice versa. Its default value is 6.

The gamma and normal distributions are the alternatives for the mean prior distribution. 
In principle, the normal distribution would be the most natural choice because, according 
to maximum likelihood theory, the mean is asymptotically normal distributed with expecta-
tion and variance depending on the dose and the dose-response function. The calibrative 
density is then proportional to the prior dose density multiplied by a probability function 
of a Hermite distribution, that is, a Poisson-mixed normal distribution. However, to mix a 
Poisson with a normal distribution only makes sense when the population mean of the nor-
mal distribution is greater than its variance. For this reason, when using the normal mean 
prior option, the range of doses of the calibrative density could be truncated to the right, 
and potentially not being enough sensible for the considered sample. Conversely, using the 
gamma mean prior distribution (the default), mixing a Poisson with a gamma distribution 
(negative binomial distribution) does not create such problems and the range of doses is not 
truncated. Moreover, a gamma distribution with a large shape parameter is a good approxi-
mation to the normal distribution. Therefore, it is recommended in general to use the gamma 
mean prior option.

The gamma and uniform distributions are the alternatives for dose prior distributions. The 
gamma distribution has been used for instance in [11], and is parametrized here in terms of its 
mean and standard deviation. The uniform distribution is parametrized by its minimum and 
maximum, and to the knowledge of the authors it has not been previously used for cytoge-
netic dosimetry, even though is a sensible choice in general dosimetry. The dose prior choice 
depends on expert opinion and/or the information collected from the irradiation event. If there 
is no prior information, the most appropriate option is to choose an improper uniform prior 
defined between zero and infinity. This non-informative option is the default. If limited knowl-
edge about the dose is available, for instance its maximum range, then we could use as a prior 
a proper uniform distribution defined over zero and the maximum range. More information 
about the dose (for instance mean and standard deviation), as in the example 3.1, can lead to 
the use of a gamma prior.

The function output collects the sequence of doses and their respective probability density.

2.4. Statistics summary, credible region, and probability between doses

A summary containing the most relevant information about the estimated doses can be 
obtained via summary().

This function, when applied to the output of dose.distr, gives the most interesting 
statistics in this context including mode, expected value, standard deviation and 95% HPD 
credibility interval.

The HPD credible interval for an object of class dose.radir can be obtained numeri-
cally by means of the function ci.dose.radir, with these parameters:

 • object: an object of class dose.radir containing the estimated doses.
 • cr: credible region size. Its default value is 0.95.

The probability between two doses can be obtained numerically by means of the function 
pr.dose.radir, with parameters
 • object: an object of class dose.radir containing the estimated doses.
 • lod: lower dose value. Its default value is 0.
 • upd: upper dose value. Its default value is the maximum dose in object.

D Moriña et alJ. Radiol. Prot. 35 (2015) 557
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2.5. Plots

Graphics can be obtained in the standard way by means of R plot() or lines() functions.
The plot function can also be used to present credible intervals through the argument 

ci=TRUE. The desired credible region size can be fixed using the argument cr, which is 0.95 
by default. The colour of the shaded credible region is grey by default, but it may be changed 
by using the argument col.ci. For instance, to see the credible region shaded in red, the user 
should write col.ci="red".

The probability between two doses can be graphically represented by means of the argu-
ment prob=c(d1,d2), where d1 and d2 are respectively the lower and upper doses con-
sidered. The colour of the shaded region is grey by default, but it may be changed by using the 
argument col.pr in the same way as for the parameter col.ci.

The distribution function can be plotted as well, using the argument distr=TRUE in the 
plot function.

3. Examples

Several examples of use of the radir package (some of them introduced in [8]) are described 
in detail in this section.

3.1. Cobalt-60 gamma-ray irradiation

In [8] the authors consider an example from an in vitro cobalt-60 gamma-ray exposure. From 
the calibration data (table 1 in [8]) the 1.5 Gy row is removed to be inferred later. The model 
consists of a linear-quadratic dose response without a constant term curve, β β+x x2

2
1 , where 

x represents the absorbed dose, assuming that the counts of the chromosomal aberrations are 
Poisson distributed. The specific data used in this example (and in the others) were obtained 
from real experiments, and are reasonable for a cobalt-60 gamma-ray exposure.

Maximum likelihood estimation provides

⎛
⎝
⎜

⎞
⎠
⎟β β= ⋅ = ⋅ Σ =

−
−

⋅β
− − −ˆ 3.126 10 , ˆ 2.537 10 , ˆ 7.205 3.438

3.438 2.718
10 .1

3
2

2 ˆ 6

The 1.5 Gy sample consisted of 102 observed dicentrics in a total of 1811 blood cells. 
Therefore, the calibrative dose density for this observed data (assuming an improper uniform 
dose prior) can be calculated with the radir package by means of:

 library(radir)
 f  <- expression(b1*x+b2*x^2)
 pars  <- c("b1","b2")
 beta  <- c(3.126e-3, 2.537e-2)
 cov  <-  matrix(c(7.205e-06,-3.438e-06,-3.438e-06,2.718e-06), 

nrow=2)
 ex1.a  <- dose.distr(f, pars, beta, cov, cells=1811, dics=102, 

m.prior="normal")

The default situation in dose.distr() is a gamma mean prior, as

 ex1.b  <- dose.distr(f, pars, beta, cov, cells=1811, dics=102)
In [8] the authors consider that, assuming that the real dose is unknown, a reasonable prior 

dose distribution is gamma with mean 1.75 and standard error 0.375. This can be implemented 
in the radir package by means of
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 ex1.c  <- dose.distr(f, pars, beta, cov, cells=1811, dics=102, 
d.prior="gamma", prior.param=c(1.75,0.375))

Figure 2 shows the plot of the three densities of the estimated dose for the test data. It has 
been obtained using the plot() function on the outputs of function dose.distr (ex1.a, 
ex1.b and ex1.c), generated from the following code:

 plot(ex1.a)
 lines(ex1.b, col="red")
 lines(ex1.c, col="blue", lty=3)

It should be observed that these results incorporate the real dose (1.5 Gy) and show the 
equivalence of both mean priors. Note that the gamma mean prior is moderately more con-
servative. A summary table of the statistics of the three calibrative densities calculated in this 
example can be obtained via the summary() function. For instance, for the first case:

summary(ex1.a)

   Mode
   ----------------------------
   1.43
  Expected value
   ----------------------------
   1.432
  Standard Dev.
   ----------------------------
   0.081
  95% CI
   ----------------------------
   (1.275; 1.591)

A figure showing the density and the 90% HPD interval (figure 3) can be obtained by means of

plot(ex1.a, ci=T, cr=0.90)

Figure 2. Calibrative densities of the 1.5 Gy test data for a normal mean prior and a 
U( ∞)0,  dose prior (black, ex1.a), for gamma mean priors and a U( ∞)0,  dose prior 
(red, ex1.b) and a gamma dose prior (blue dotted line, ex1.c). Note that the black 
and red lines are indistinguishable (adapted with permission from [8] under CC-BY 
licence 2015).
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3.2. Analysis of doses in thyroid cancer patients

Serna et al [12] studied chromosomal damage in lymphocytes of thyroid cancer patients after 
radioiodine treatment. The authors carried out the micronucleus assay in binucleated cells of 
blood samples from 25 patients 3 d after iodine-131 (3.7 GBq) exposure. The in vitro dose-
response curve was fitted by a linear-quadratic model, β β β β( ) = + +f x G x x, 2

2
1 0 according 

to Poisson’s law, and the estimate of β0 was not taken into account, because the authors in [12] 
argued that the intercept could change for each patient. The constant G is the Lea-Catcheside 
generalized dose-protraction factor, which modifies the quadratic term according to the tem-
poral pattern of exposure; for the in vitro assay, G   =   1. The authors calculated the following 

parameter estimates β β( ± ( ))ˆ SE ˆ
i i ,

β β ρ= ( ± ) ⋅ = ( ± ) ⋅ = −− −ˆ 13.6 5.5 10 , ˆ 3.7 1.6 10 , 0.89,1
3

2
2

where ρ is the correlation coefficient. Taking into account the characteristics of the iodine-131 
treatment, the authors in [12] found the factor G to be close to 0.1. Then β0, the background 
of each patient, was estimated by counting the micronuclei of the patient from a blood sample 
taken before the treatment, information provided in [12]. This leads to the fitted regression 

model β β β β( ) = + +f x G x x, ˆ ˆ ˆ ˆ
2

2
1 0 with a covariance matrix that incorporates the variance of 

β̂0 without correlation with β̂1 and β̂2. For instance, Patient 1 presented 487 normal cells and 
13 cells with just one micronucleus each for a total of 500 cells scored. Before the treatment 5 

micronuclei were found in 500 blood cells, thus β = ( ± ) ⋅ −ˆ 10 4.472 100
3.

A gamma mean prior is preferred instead of a normal in this case, because the range of doses sup-
ported by the normal mean prior is very small, due to mathematical constraints. In [8] the authors 
show that in that case, the predictive posterior distribution represents the probability of a nega-
tive binomial random variable taking a value of 13 counts, with mean 4.810  ·  10−3x2 + 0.177x  + 
0.130 and variance ⋅ − ⋅ + ⋅ + +− − −x x x x4.326 10 2.647 10 1.008 10 0.177 0.1336 4 4 3 2 2 , for 
Patient 1. It is possible to define all needed input values for the radir package to analyse the 
patient data via

Figure 3. 90% HPD interval of the calibrative density of the 1.5 Gy test data for a 
normal mean prior and a U( ∞)0,  dose prior.
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f  <- expression(b0+b1*x+0.1*b2*x^2)
pars  <- c("b0","b1","b2")
beta  <- c(0.01, .0136, .0037)
cov  <- matrix(c(1.98e-05,0,0,0,.3121*10^(-4),-.0798*10^(-4),0, 

-.0798*10^(-4), .0256*10^(-4)),nrow=3)
Three calibrative densities have been calculated applying two different proper uniform 

prior dose distributions, both using information given in [12]. An administered radioiodine 
activity that produces a blood dose less than 2 Gy is considered safe in the context of medical 
uses of radiation [13], so one could take a uniform dose prior distribution from 0 to 2 (ex2.
u1). On the other hand, the calibration curve was calculated up to a dose of 4.5 Gy, so another 
uniform dose prior distribution could be from 0 to 4.5 (ex2.u2). An improper uniform prior 
dose distribution from 0 to ∞ is also applied (ex2.u3). This can be done with the radir 
package by means of

ex2.u1  <- dose.distr(f, pars, beta, cov, cells=500, dics=13, 
prior.param=c(0, 2))

ex2.u2  <- dose.distr(f, pars, beta, cov, cells=500, dics=13, 
prior.param=c(0, 4.5))

ex2.u3  <- dose.distr(f, pars, beta, cov, cells=500, dics=13)
Table 1 shows the summary results for the 25 patients described in [12]; these results were 

obtained using a loop that runs the function dose.distr for each patient, taking the pre- 
and the post-radiotherapy information for each of the two uniform prior dose distributions 
indicated (U(0,2) and an improper uniform distribution). The code that produces these results 
is provided as supplementary material (stacks.iop.org/JRP/35/030557/mmedia).

3.3. New model for low and high doses

In [14] the authors present a new model for biological dosimetry under a weighted Poisson 
assumption, where the mean of the underlying Poisson is a Gompertz function of the dose, 
and the underdispersion level is a linear function of the dose. This leads to a model where the 
mean of dicentrics is

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟β β

β β
β β β

( ) = +
( + )

+ ( ( ) + )
β

β

β β
−

−

− −
β

β

β β

−
−

− −f x
x

x
, e 1

2 e 1

1 e e
.0

e 3 0
e

3 0
2 e 2

0
e

x

x

x x
1 2

1 2

1 2 1 2
 (1)

This model is especially useful for high dose exposures.
The in vitro irradiation experiment was performed using 10 different doses, from 0 to 

25 Gy, and numbers of dicentrics in blood lymphocytes were then counted. The models in 
radir are only for the Poisson assumption, so a Poisson model is defined with the dose-
response curve defined by expression (1). The maximum likelihood estimation is

⎛

⎝

⎜
⎜
⎜
⎜⎜

⎞

⎠

⎟
⎟
⎟
⎟⎟

β β β β= = = =

Σ =

−

−
β

ˆ 8.676,   ˆ 7.262,   ˆ 0.230,   ˆ 2.388,

ˆ

0.056 0.006 0.001 0.019

0.006 0.089 0.001 0.305

0.001 0.001 0.000 0.003

0.019 0.305 0.003 1.146

.

0 1 2 3

ˆ
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To check the methodology and the radir performances, doses are inferred from test data 
shown in [14] (table 2).

Therefore, the input parameters for the radir package should be
f  <- expression(b0*exp(-b1*exp(-b2*x))*(1+b3*x*(2*b0*exp(-b1*exp 

(-b2*x))+1)/(1+b3*x*(b0^2*(exp(-b1*exp(-b2*x)))^2+b0*exp 
(-b1*exp(-b2*x))))))

pars  <- c("b0","b1","b2","b3")
beta  <- c(8.6759674, 7.2624173, 0.2296528, 2.3875238)
cov  <- matrix(c(0.0562628690,0.0056047214,-8.120599e-04, 

0.018587644,0.0056047214,
0.0894182387,9.727568e-04,0.304724328,-0.0008120599, 

0.0009727568,3.792577e-05,
0.002753902,0.0185876441,0.3047243281,2.753902e-03,1.14572469

7),nrow=4)

Table 1. Statistics summary of the calibrative densities of the 25 patients in [12] for 
U( )0, 2  and U( ∞)0,  dose priors.

Prior dose 
Patient

U( )0, 2 U( ∞)0,

Expected SD 95% HPD Mode Expected SD 95% HPD

1 1.141 0.481 (0.319, 2.000) 1.140 1.593 0.919 (0.027, 3.362)
2 1.155 0.471 (0.355, 2.000) 1.141 1.588 0.894 (0.079, 3.365)
3 0.759 0.477 (0.000, 1.679) 0.475 0.867 0.637 (0.000, 2.121)
4 1.237 0.444 (0.470, 2.000) 1.279 1.739 0.908 (0.231, 3.599)
5 1.099 0.470 (0.326, 2.000) 1.007 1.434 0.828 (0.057, 3.068)
6 0.847 0.487 (0.000, 1.748) 0.605 1.001 0.693 (0.000, 2.358)
7 1.172 0.459 (0.398, 2.000) 1.143 1.587 0.870 (0.144, 3.343)
8 1.011 0.488 (0.206, 1.977) 0.871 1.290 0.806 (0.000, 2.841)
9 0.842 0.478 (0.000, 1.735) 0.602 0.982 0.671 (0.000, 2.288)
10 1.116 0.457 (0.374, 2.000) 1.008 1.431 0.797 (0.133, 3.041)
11 0.791 0.499 (0.000, 1.729) 0.482 0.949 0.715 (0.000, 2.356)
12 0.452 0.389 (0.000, 1.266) 0.000 0.471 0.430 (0.000, 1.344)
13 0.851 0.495 (0.000, 1.760) 0.608 1.025 0.722 (0.000, 2.433)
14 1.020 0.479 (0.236, 1.976) 0.871 1.280 0.777 (0.000, 2.773)
15 0.580 0.435 (0.000, 1.470) 0.222 0.624 0.515 (0.000, 1.655)
16 0.542 0.437 (0.000, 1.450) 0.000 0.589 0.524 (0.000, 1.653)
17 0.746 0.467 (0.000, 1.655) 0.471 0.840 0.610 (0.000, 2.038)
18 0.607 0.449 (0.000, 1.521) 0.225 0.663 0.544 (0.000, 1.757)
19 0.940 0.470 (0.138, 1.880) 0.734 1.117 0.700 (0.000, 2.465)
20 0.771 0.486 (0.000, 1.699) 0.478 0.899 0.673 (0.000, 2.215)
21 0.771 0.486 (0.000, 1.699) 0.478 0.895 0.663 (0.000, 2.202)
22 1.141 0.481 (0.319, 2.000) 1.140 1.590 0.913 (0.027, 3.362)
23 1.075 0.490 (0.261, 2.000) 1.005 1.445 0.874 (0.000, 3.119)
24 0.934 0.482 (0.100, 1.872) 0.736 1.128 0.724 (0.000, 2.529)
25 0.931 0.491 (0.070, 1.861) 0.738 1.145 0.756 (0.000, 2.609)

Note: Note that the mode is the same for both priors.
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Then, the four situations proposed in table 2 can be introduced in R by means of

ex3.a  <- dose.distr(f, pars, beta, cov, cells=498, dics=155)
ex3.b  <- dose.distr(f, pars, beta, cov, cells=150, dics=425)
ex3.c  <- dose.distr(f, pars, beta, cov, cells=150, dics=869)
ex3.d  <- dose.distr(f, pars, beta, cov, cells=100, dics=914)

Again, the summary() function can be used to check that the results are similar to the 
expected; for instance, for the first experiment we have

summary(ex3.a)
   Mode
   ----------------------------
    1.748
   Expected value
   ----------------------------
    1.757
   Standard Dev.
   ----------------------------
    0.11
   95% CI
   ----------------------------
   (1.544; 1.975)

The probability of a dose exposure between 1.544 and 1.977 is, as expected, approximately 
0.95; it can be checked using

pr.dose.radir(ex3.a, as.numeric(substr(summary(ex3.a)[[4]], 
2,6)),

as.numeric(substr(summary(ex3.a)[[4]],9,13)))

  [1] 0.9499784

The cumulative distribution for this particular example (figure 4) can be plotted with

plot(ex3.a, distr=T)

The region under the calibrative curve for doses from 15 to 20 Gy can be plotted for the 17 
Gy test data calibrative density (figure 5) using

plot(ex3.d, prob=c(15,20))

Table 2. Cells analyzed and total dicentrics counts for the simulated 
whole body irradiations for testing, and the statistics summary of their 
respective calibrative densities.

Dose (Gy) Dicentrics Cells Mode Expected SD 95% HPD

2 155 498 1.748 1.757 0.110 (1.544, 1.975)

6 425 150 5.850 5.859 0.228 (5.415, 6.308)

12 869 150 9.747 9.763 0.311 (9.158, 10.378)

17 914 100 16.143 16.814 1.778 (14.148, 19.953)
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4. Discussion

Biological dosimetry is necessary in many situations when dealing with radiation events, and 
a quick and accurate estimation of the radiation doses received by individuals undergoing 
medical radiation treatments or following a radiation accident is essential in many scenar-
ios. This work presents a readily available package in the framework of the well-known and 
widely distributed R software that represents a novel and useful tool to achieve this goal.  
It allows the user to estimate radiation doses received by an individual on the basis of a new 
inverse regression methodology and using the recently validated Bayesian framework which 
is able to compute true probability intervals.

The package uses as inputs the estimated parameters and variance–covariance matrix of 
the dose-response function, obtained using classical (frequentist) maximum likelihood meth-
ods. Therefore, the radir package can be seen as a complement of other existing packages 
(CABAS [4], DoseEstimate [5] or BioDoser [6]), which have to be used to obtain the required 
inputs.

Figure 4. Cumulative distribution function of the 2 Gy test data.
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Figure 5. Calibrative density of the 17 Gy test data and the probability of the dose to 
be in (15, 20).
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The usability of the radir package in several common radiation-related situations has been 
demonstrated through the proposed examples, although the methodologies introduced in [8] 
and therefore the package itself could also be used in areas not related to biological dosimetry. 
Improvements planned for the package radir include the consideration of a normal prior dose 
distribution truncated at negative values [3], the ability to fit the dose-response curve given the cali-
bration data, and the analysis of high-linear energy tranform scenarios using the compound Poisson 
models described in [8]. A Bayesian dose estimation of partial body-irradiated blood samples fol-
lowing the new methodology of [15] will also be considered for future enhancement of the package.
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