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The relationship between structural connectivity (SC) and functional connectivity (FC) in the human brain can be
studied using magnetic resonance imaging (MRI). However many of the underlying physiological mechanisms
and parameters cannot be directly observed with MRI. This limitation has motivated the recent use of various
computational models meant to bridge the gap. However their absolute and relative explanatory power and
the properties that actually drive that power remain insufficiently characterized. We performed an extensive
comparison of seven mainstream computational models predicting FC from SC. We investigated the extent to
which simulated FC could predict empirical FC. We also applied graph theory to the entire set of simulated and
empirical FCs in order to further characterize the relationships between the models and the MRI data. The com-
parison was performed at three different spatial scales. We found that (i) there were significant effects of scale
and model on predictive power; (ii) among all models, the simplest model, the simultaneous autoregressive
(SAR) model, was found to consistently perform better than the other models; (iii) the SAR also appeared
more ‘central’ from a graph theory perspective; and (iv) empirical FC only appeared weakly correlated with
simulated FCs, andwas featured as ‘peripheral’ in the graph analysis.We conclude that the substantial differences
existing between these computational models have little impact on their predictive power for FC and that their
capacity to predict FC from SC appears to be both moderate and essentially underlined by a simple core linear
process embodied by the SAR model.

© 2015 Elsevier Inc. All rights reserved.

Introduction

Magnetic resonance imaging (MRI) has proven to be a valuable
technique for studying non-invasively the architectures of structural
connections and of functional interactions between anatomical re-
gions in the brain. Structural connectivity (SC) can be estimated
using diffusion-weighted imaging (DWI) based tractography, while
direct and indirect functional interactions can be inferred based on
resting-state functional MRI (rs-fMRI) using measures of functional
connectivity (FC). Both measures of connectivity can be related in
order to better understand the relationships between SC and FC at
various scales, including how SC conditions and constrains FC. Be-
yond the analysis of empirical correlations between SC and FC, com-
putational models of neuronal and hemodynamics have been used in
an attempt to further bridge the explanatory gap between observed
SC and FC (Horwitz, 1990; Breakspear et al., 2010; Woolrich and
Stephan, 2013).

In the present study, we report on an extensive comparison of the
performance of seven mainstream computational models that have
been previously used for predicting FC from SC (Deco et al., 2008;
Honey et al., 2009; Cabral et al., 2011, 2012; Deco and Jirsa, 2012;
Messé et al., 2014). First, building upon previous reports (see,
Messé et al., 2014, 2015), we investigated the extent to which simu-
lated FCs could predict empirical FC using measures of predictive
power, i.e. the correlation between simulated and empirical FC. Sec-
ond, we applied graph theory to the simulated and empirical FCs in
order to further characterize their relationships. The comparison
was performed at three different spatial scales (based on
parcellations that partitioned gray matter into 160, 461 and 825 re-
gions). We observed that (i) there were significant effects of scale
and model on predictive power; (ii) among all models, the simplest
model, the simultaneous autoregressive (SAR) model, was found to
consistently perform better than the other models; (iii) this model
also appeared more ‘central’ from a graph theory perspective; and
(iv) empirical FC only appeared weakly correlated with simulated
FC, and was characterized as ‘peripheral’ in the graph analysis.

We conclude that these computational models, which display
oscillatory behaviors and dynamics that can be quite different, mostly
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differ in aspects that have little impact on their predictive power for FC
over the range of parameters explored. As reflected in our graph analy-
sis, beyond their differences, their ability to predict FC from SC appears
tomostly reduce to that of a simple core linear process embodied by the
SAR model.

Material and methods

The processing pipeline is summarized in Fig. 1.

Real data

Acquisition
Twenty one right-handed healthy volunteers were recruited

within local community (11 males, mean age 22 ± 2.4 years). All
participants gave written informed consent and the protocol was ap-
proved by the local ethics committee. Data were acquired using a 3T
Siemens Trio TIM MRI scanner (CENIR, Paris, France). Resting-state
fMRI series were recorded using a single-shot, gradient-recalled
echo-planar imaging sequence (repetition time TR: 3290 ms; echo
time TE: 31 ms; 1.5 × 1.5 × 2.5 mm3 voxels; 46 contiguous slices).
Two hundred fMRI volumes were acquired, during 11 min. The sub-
jects were instructed to remain eyes closed and to reduce any mental
effort. DWI data were recorded using a single-shot, echo planar im-
aging sequence (TR: 13 s; TE: 121 ms; 2 mm3 isotropic voxels; 68
contiguous slices). Fifty encoding directions with b = 1000 s/mm2

and a non-weighted image were acquired for each subject. A three
dimensional, T1-weighted, magnetization prepared rapid gradient-
echo volume was also acquired during the same scanning session
(TR: 2.3 ms; TE: 2.98 ms; 1.1 mm3 isotropic voxels). fMRI data
were preprocessed using SPM5 software.1 For each subject, the first
4 fMRI volumes were discarded to allow for T1 equilibration, and
the remaining 196 fMRI volumes were corrected for slice-timing
and head motion, excessive motion (greater than 3 mm or 3°) was
not present in any of the subjects' scans. The resulting data were
then spatially smoothed using an isotropic 6 mm full-width-at-
half-maximum Gaussian kernel. DWI images were corrected for
eddy-current distorsions using FSL, release 4.12 (Smith et al.,
2004). Spatial normalization using linear transformations (combina-
tion of 3 translations, 3 rotations and 1 scale factor), between fMRI
and DWI data and the anatomical volume, were computed for each
subjects using FSL. Non-linear spatial normalization was also com-
puted from the T1-weighted anatomical volume of each subject to
the standard space of the Montreal Neurological Institute (MNI) for
visualization purpose.

Regions of interest
The T1-weighted anatomical volume of each subject was parcellated

using Freesurfer 3 (Fischl et al., 2004) and the procedure described in
Hagmann et al. (2008). The procedure segmented the brain into gray
matter and white matter compartments, and distinguished cortical and
sub-cortical structures. A labeled cortical surface from an average tem-
plate brain was registered onto the individual cortical surfaces, yielding
a partition of the cerebral cortex of each subject into 160 regions
(80 per hemisphere). Next, the regions of the template were further
subdivided into a set of smaller compact regions, yielding a finer partition
of the cerebral cortex into 424 and 789 regions (about 6 and 3 cm2 each
respectively). These finer partitionswere then registered on the individu-
al brains following the Freesurfer dedicated procedure. Finally, these re-
gional partitions were registered using linear transformations previously
calculated to the DWI and rsfMRI data of the subjects in order to derive
corresponding matrices of SC and FC respectively.

Anatomical wiring
To quantify SC, we used the probabilistic whitematter fiber tracking

method (Behrens et al., 2007) implemented in FSL to track all possible
connections between all pairs of regions. For every voxel of the white
matter we initiated 500 fiber samples. Starting points were chosen ran-
domly within the voxel space. Initial fiber orientation was randomly
chosen and then fiber grew in the two opposite directions with a prop-
agation step set at 0.5 mm and a maximal fiber curvature at 80° (no
anisotropy constraint). Fiber tracking was stopped when samples
reached the cortical surface. An index of structural connectivity
between two regions was then defined as the proportion of fiber sam-
ples connecting these two regions per unit surface. This index was fur-
ther divided by the average fiber length to account for the bias of the
method towards longer fibers. This structural connectivity index
allowed us to build a structural connectivity matrix D = (Dij) for each
subject, Dij being the structural connectivity index from region i to re-
gion j, with no self-connections (i.e. Dii = 0). D was then thresholded
at 0.001; supra-threshold values were conserved as such. Likewise, we
built a matrix L = (Lij) for each subject, with entry Lij corresponding
to the average fiber length between regions i and j.

BOLD signal
The time series of all voxels within a given region were spatially

averaged to form the representative BOLD signal of that region. To
remove spurious sources of variance, linear and quadratic drifts, motion
parameters, averaged ventricular, white matter and global brain signals
were regressed out, and finally time series were low-pass filtered
(b0.1 Hz) (Fox et al., 2009; Van Dijk et al., 2010).

Summary
For each subject and spatial scale (160, 461 and 825 regions), the

preprocessing yielded three matrices: one of SC, one of average fibers'
length (necessary for models explicitly taking into account delays of
conduction), and one matrix of FC. These matrices were also averaged
across subjects to yield ‘average subject’ data.

Simulations

Models
We used seven generative models possessing various levels of com-

plexity: the SAR model, a purely spatial model with no dynamics that
expresses BOLD fluctuations within one region as a linear combination
of the fluctuations in other regions; theWilson–Cowan system, a popu-
lar model integrating excitatory and inhibitory neuronal populations; a
rate model, which is a simplified version of the Wilson–Cowan system
obtained by considering exclusively the excitatory population; the
Kuramoto model, which simulates coupled oscillators; the Fitzhugh–
Nagumo model, a reduction of the Hodgkin and Huxley model aiming
at reproducing complex behaviors with explicit conductance-based
dynamics; the neural-mass model, also based on models of conduc-
tances and featuring strong biophysiological constraints; and finally,
the model of spiking neurons, the most constrained model in the
current study, which models neuron populations as attractors. Model
complexity was quantified by the amount of parameters present in
each model. For most models, all parameters were taken from the
original papers, except the global coupling strength which was opti-
mized separately for each model (see below). For more details on the
models, see Appendix A.

From SC to BOLD via simulated neuronal activity
All models took a SCmatrix as input, and all but the SARmodel were

explicit models of neuronal activity over time. Simulated fMRI BOLD
signals were obtained from simulated neuronal activity by means of
the Balloon–Windkessel hemodynamic model (Larter and Brent, 1999;
Friston, 2003). Global mean signal was then regressed out from each
region's time series. Finally, simulated FCwas computed as the pairwise

1 http://www.fil.ion.ucl.ac.uk/spm/software/spm5/.
2 http://www.fmrib.ox.ac.uk/fsl/.
3 http://surfer.nmr.mgh.harvard.edu/.
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Pearson correlation between simulated time series. For the SAR model,
simulated FC could be directly derived from the analytical expression
of the covariance matrix, see Eq. (A.2).

Numerical details of simulations
All simulations were performed in Matlab (The MathWorks Inc.,

Natick, MA), except for the spike model that had been implement-
ed in the C language. The SAR model provides a closed form for the
covariance matrix [see Eq. (A.2)] that can be used to directly com-
pute the predicted functional connectivity. Dynamical models
were simulated at a sampling frequency of 10 kHz. Simulations of
the rate, Wilson–Cowan, Kuramoto, and Fitzhugh–Nagumo models
relied on the Euler integration scheme, while Matlab ordinary
differential equation solver was used for the neural-mass model.
The resulting data were then downsampled to a sampling frequen-
cy of 1 kHz. The data corresponding to the first 20 s of the simula-
tions were discarded from the analysis to avoid initial transient
dynamics, resulting in 8 min of simulated brain activity. Simulated
fMRI BOLD signal was obtained from neuronal activity by means of
the Balloon–Windkessel hemodynamic model with a final sam-
pling frequency of 2 Hz (Friston, 2003). The computational burden
of the simulations according to the different models is summarized
in Table 2.

After optimization (see below), in order to improve stability, we
generated three runs of 8 min of BOLD activity with random initial
conditions and averaged the corresponding run-related simulated FCs
in order to obtain the simulated FC for each dynamical model and
each subject.

Parameter optimization
All models took a normalized form of the SC matrix as an input, as

well as the value of a global coupling strength parameter over all pairs
of regions. We performed a model-specific optimization step over this
latter parameter. For each model independently, we generated data
with different matrix normalization strategies and values for the cou-
pling parameter and saved the configuration thatmaximized predictive

power. For normalization of SC, we considered 2 approaches: spectral
and row normalizations (Barnett et al., 2009). Spectral normalization
consists in dividing the SC matrix by its spectral radius, i.e. the largest
absolute value of its eigenvalues. Row normalization imposes that the
matrix rows sum to 1 (Tononi et al., 1994). For the coupling parameter,
we used known bounds whenever it was documented (for the SAR and
Ratemodels) and had a purely exploratory approach otherwise. Optimi-
zation was performed separately for each model on the average subject
at the lowest spatial scale to limit computational burden (see supple-
mentary Fig. S1). For all the remaining parameters, specific for each
model, values were taken mostly from the original papers (see Table 1).

Statistical analyses

For each of the 21 subjects and the 3 spatial scales (160, 461, and 825
regions), we obtained onematrix of empirical FC from Real data section
and, from Simulations section, eight matrices of simulated FC, one for
each computational model (including the one derived from SC). All
matrices were vectorized to yield a total of 21 (subjects) × 9 (7 compu-
tational models + empirical FC + SC) = 189 vectors of dimension
#regions(#regions–1)/2, representing the FC patterns. For a given
subject, model and spatial scale, performance was assessed using pre-
dictive power, which was quantified by means of Pearson correlation
between the pattern of empirical FC and that of FC simulated according
to the model specified.

A 3-way ANOVA was performed on predictive power as a function of
spatial scale (3 levels), computationalmodel (8 levels) as a repeatedmea-
sure over the 21 subjects, and including interactions. Box coefficient was
applied for repeated measures and post-ANOVA analysis was performed
using Tukey–Kramer HSD method (Tukey, 1953; Kramer, 1956). The
validity of the assumptions was checked. The analysis was performed
with JMP V10 software4 (SAS Institute, Cary, NC) and STATA5 (StataCorp,
College Station, TX).

4 http://www.jmp.com.
5 http://www.stata.com.

Fig. 1. Flowchart illustrating the processing pipeline and empirical data. (A) From the rawMRI data to the comparison of simulated functional connectivities. (Orange) raw data, (green)
generated data, (blue) processes, and (red) comparativemeasures. (B) Brain parcellations and corresponding averaged structural (lower triangular part) and empirical functional (upper
triangular part) connectivities for increasing spatial scales (from top to bottom).
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Graph-theoretic comparison

The generative models considered here have intrinsic differ-
ences, expressed in the diversity of their generative equations. Be-
cause of this complexity, it is difficult to analyze and understand
the role that these theoretical differences play in the relative differ-
ences in performance. One way of further characterizing the rela-
tionships between models is to study how the 189 FC patterns
(corresponding to different subjects and different origins: empiri-
cal FC or predictor from SC, SAR, and computational models) are re-
lated with one another from a graph-theoretic standpoint. In this
perspective, a graph is defined where each of the 189 FC patterns
is a node and the similarity between any two nodes is quantified
using partial correlation (see below). Using tools from graph

theory, we can characterize the main paths connecting simulated
to empirical FCs. We can quantify whether there is a shortest path
of a given model to empirical data through another model. We
can further quantify whether models tend to have shortest paths
all going through the same ‘central’ model in order to reach empir-
ical data.

We computed the correlation between all pairs of the 189 FC patterns
at a given scale. The resulting 189-by-189 correlation matrix was then
transformed into a matrix of partial correlation, in order to remove con-
founding effects of indirect similarity and only keep effects that are
more closely related to direct relationships (Whittaker, 1990; Fitch and
Jones, 2009). Such an approach has been used in various contexts to
explore the organization of brain networks, using fMRI-based FC analyses
(Marrelec et al., 2006; Nakamura et al., 2009) and measures of cortical

Table 1
Computational models. Summary of models used.

Model Variables # of parameters Parameters References

SAR y, BOLD signal 2 σ Noise level Tononi et al. (1994)
Messé et al. (2014, 2015)

Rate u, firing rate 4 v Velocity Galán (2008)
τ Time scale Cabral et al. (2012)
σ Noise level

Kuramoto θ, oscillator phase 4 v Velocity Yeung and Strogatz (1999)
ω Intrinsic pulsation Cabral et al. (2011)
σ Noise level

Fitzhugh-Nagumo x, slow state 8 v Velocity Stefanescu and Jirsa (2008)
y, fast state τ Time scale (×2) Ghosh et al. (2008)

α, β, γ Parameters
σ Noise level

Wilson-Cowan E, excitatory neurons 10 v Velocity Wilson and Cowan (1972)
I, inhibitory neurons τ Time scale (×2) Deco et al. (2009)

ωI, ω+ Synaptic strengths
a, b, c Transfer function parameters
σ Noise level

Neural-mass V, excitatory neurons 23 gion Conductance (×3) Breakspear et al. (2003)
Z, inhibitory neurons Tion, δion Open ion channels parameters (×3) Honey et al. (2009)

ϕ, τ Open potassium channels parameters
V, δ Neural-mass parameters (×2)
Vion Nernst potential (×3)
aii, aee, aie Synaptic strengths
rNMDA Number of NMDA receptors

Spike attractor E, excitatory neurons 35 N Number of neurons (×2) Deco and Jirsa (2012)
I, inhibitory neurons gm Conductance (×2)

Cm Capacitance (×2)
VL Resting potential (×2)
Vthr Subthreshold dynamics (×2)
Vreset Membrane potential (×2)
τm Time constant (×2)
VI, VE Reserval potentials
τrf Refractory period
ωj, ω+, ω Synaptic strengths
gAMPA, ext External synaptic conductances (×2)
gAMPA,rec gNMDA, gGABA Recurrent synaptic conductances (×2)
τNMDA, τNMDA,rise, τGABA Rise and decay times
τNMDA,decay Decay time
α, β, γ Parameters

Table 2
Computational burden. Mean (standard deviation) time across subjects, for each spatial scale and computational model.

Model Spatial scale

160 regions 461 regions 825 regions

SAR 14 ms (1 ms) 83 ms (2 ms) 134 ms (7 ms)
Rate 1 h 31 min (7 min) 10 h 27 min (36 min) 1 day 12 h (3 h)
Kuramoto 1 h 41 min (9 min) 11 h 1 min (47 min) 2 day 13 h (3 h)
Fitzhugh–Nagumo 1 h 22 min (3 min) 9 h 53 min (21 min) 2 day 8 h (4 h)
Wilson 1 h 21 min (3 min) 9 h 58 min (23 min) 1 day 22 h (10 h)
Neural mass 3 h 35 min (3 min) 7 h 49 min (4 min) 14 h 5 min (7 min)
Spike 1 day 1 h (15 min) 3 day 11 h (2 h) 7 day 3 h (3 h)
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thickness (Bassett et al., 2008). The resulting 189-by-189 partial correla-
tion matrix was then used to define a weighted graph, the weight be-
tween two FC patterns being defined as the absolute partial correlation
between these two patterns. From this graph, we computed graph-
theoretic measures of centrality, such as degree (weighted), efficiency
and betweenness centrality (Rubinov and Sporns, 2010). For graph mea-
sures based on distance (betweenness centrality and efficiency), weights
were converted into lengths or distances by the inverse transform.

In order to investigate more specifically the within-subject features of
the different patterns, we also performed the same kind of analyses but at
the individual level. For each of the 21 subjects, we computed the correla-
tion between the 9 (7 computationalmodels+ SC+empirical FC) corre-
sponding FC patterns, leading to a 9-by-9 correlation matrix that we
transformed into a partial correlation matrix. From the absolute values
of partial correlations, we computed the same measures of centrality as
above. Additionally, we computed the shortest paths from SC and simu-
lated FCs to empirical FC using Dijkstra's algorithm from distance values
(Dijkstra, 1959), for a total of 8 shortest paths per subject. For each
model, we then computed the fraction of these 8 shortest paths that
contained the model. This measure corresponds to the measure of
betweenness centrality constrained to paths leading to empirical FC.
With this measure, we aimed at identifying possible models through
which most other models' shortest paths go through before reaching
empirical data.

All analyses were implemented using Matlab (The MathWorks Inc.,
Natick, MA). We used metrics designed for weighted graphs from the
Brain Connectivity Toolbox6 (Rubinov and Sporns, 2010). Classical sta-
tistical inference was used to test differences at p b 0.05 significance.
Correction for multiple comparisons, when required, was performed
using the Bonferroni Holm method Holm (1979).

Results

Predicting empirical FC

The predictive power of models as a function of scale and their spe-
cific contribution are represented in Fig. 2. Significant effects (p-values
estimated at a 10−6 max precision) were observed for the three main
factors (3-way ANOVA: scale, F = 683, p b 10−6; model, F = 358,
p b 10−6; subject, F= 14, p b 10−6) as well as for the model ∗ scale in-
teraction (F = 40, p b 10−6). Interactions subject ∗ scale (F = 1.9, p =
0.002) and subject ∗ model (F = 1.5, p = 0.002) were also significant.
However, because of the large number of observations, the statistical
power of the tests used was high, mechanically increasing the degree
of statistical significance. By contrast, the mean-square values associat-
edwith between-scale and between-model variability were found to be
much larger than those associatedwith between-subject variability and
variability induced by interaction of scale and model with subject. Thus
we decided to ignore the factor ‘subject’ in further analyses. The post-
ANOVA analysis separated four groups of models, from best to worst
prediction:

• SAR;
• Rate, Wilson, Neural mass;
• Kuramoto, SC, Spike; and
• Fitzhugh–Nagumo.

The SAR model performed better than other models in most cases,
except for the Kuramoto model in two subjects with 160 regions, and
for the Wilson model in three subjects with 461 regions and two
subjects with 825 regions.

Analysis of partial correlation matrices

Results pertaining to partial correlation are summarized in Fig. 3. The
first observation was a clear separation between empirical and simulat-
ed FC patterns. This was confirmed by spectral clustering of the partial
correlation matrix, where a two-class clustering led to a partition of
the FCs in a group containing all empirical FCs and the other group con-
taining all simulated FCs.

The average within-model partial correlation was significantly larg-
er than the average between-model and between-subject partial corre-
lation (p b 10−6). Therefore, the FC patterns differed more between
models than within a model across subjects. Partial correlations
between the SAR and the other models were higher within- than
between-subject (p b 10−6). Partial correlations between SCs and
simulated FCs were generally negative and significantly lower within
subject than between models and between subjects (p b 10−6), except
for SAR model for which simulated FCs were significantly higher
(p b 10−6). Finally, partial correlation values within subject and be-
tween all models but SC and the SAR were only slightly or not signifi-
cantly different from partial correlation values between models and
between subjects (p = 0.0007, p = 0.009 and p = 0.06, for scales of
160, 461 and 825 regions, respectively). In other words, these other
models did not appear to be clearly correlated with one another even
within the same subject. In summary, all FCs generated with the same
model but for different subjects were correlated, while, for a given sub-
ject, all models seemed to be correlated with the SAR model and SC but
not correlated with one another. This suggests that, at least within sub-
ject, the SAR model and/or SC might be more ‘central’ from a graph-
theoretic standpoint.

Graph-theoretic comparison

Group analysis
The results of the graph theory analysis for the whole group of sub-

jects are summarized in Fig. 3. All three measures of centrality (degree,
efficiency and betweenness centrality) were significantly higher for FC
patterns derived from the SAR than from other models (all p b 0.05,
paired-tests corrected for multiple comparisons), at the exception of
the measure of betweenness centrality at the lowest spatial scale, for
which SC and the SAR did not significantly differ. The centrality of
empirical FC patterns was often significantly below (53% of the tests)
that of simulated FCs.

Individual analyses
Overall, at the individual level, the results remained consistent with

the group analysis (see Fig. 4). The SAR was always ranked as the most
‘central’ model, or hub, for all three measures of centrality, for all sub-
jects and scales, with centrality measures that were always significantly
higher than those of other models (all p b 0.05, paired-tests corrected).

The SAR model also appeared to be in a pivotal position in the indi-
vidual graphs. Its simulated FCs were topologically closest, in terms of
shortest path, to empirical FCs (90% of tests significant). It is also this
model through which most shortest paths go to reach empirical FC
(80%, 86% and 82% for scales of 160, 461 and 825 regions, respectively).

Discussion

In the present study, we performed an extensive comparison of
seven mainstream computational models of brain activity that were
used to relate structural and functional connectivity derived from MRI.
The simulations were performed usingmodels of various levels of com-
plexity on a dataset of 21 subjects at 3 spatial scales.We investigated the
behavior of the simulated FC patterns when compared to empirical FC
patterns but also in comparison to one another. We observed that
(i) there were significant effects of scale and model on predictive
power; (ii) among all models, the simplest model, the SAR model, was6 https://sites.google.com/site/bctnet/.
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found to consistently perform better than the other models; (iii) this
model also appeared more ‘central’ from a graph theory perspective;
and (iv) by contrast, empirical FC only appeared weakly correlated
with simulated FCs, and appeared as ‘peripheral’ in the graph analysis.

A variety of models

In recent years, there has been a growing interest in the use of com-
putational models of brain activity to relate structural and functional
connectivity from MRI in a generative manner. Various alternative
models have been proposed to perform such analyses. In the present
study, we considered 6 generative models, plus a simple linear model
(SAR) and prediction from SC alone. The generative models considered
ranged from a simplification of aWilson–Cowanmodel (Rate) to a com-
plex model of neuronal dynamics (Spike). The models considered are
quite different in their origins, definitions, complexities, and parameters
(see Appendix A). For instance, their complexity ranged from 2
parameters and an average computation time of 14 ms per subject
(for 160 regions; the SAR) to 35 parameters and an average compu-
tation time of 1 day and 1 h per subject (Spike). These models
displayed oscillatory behaviors and dynamics that can be quite
different (Fig. 5). Unsurprisingly, this variety of behaviors resulted in
a variety of simulated FC patterns. As shown by our graph-theoretic
analysis, these patterns seemed to share some commonalities, in partic-
ular for simulations coming from the same generative model or for the
same subject (and only specific models). Our results showed that simu-
lated FCs tended to cluster by model rather than by subject. In other

words, the differences observed in simulated FC patterns were more a
reflection of the differences between models than a reflection of
the between-subject variability induced by differences in structural
connectivity. We interpret this as evidence that the models used here
are able to simulate a variety of FC patterns, with differences that are
non-trivial and complex.

Predictive powers

This variety of FC patterns had an effect on the predictive power, as
supported by our ANOVA, which found an effect of scale, model, as well
as of model ∗ scale interaction. Scale had a negative effect on the predic-
tive power. Regarding the global effect of themodel, while we expected
more complex models to have better predictive power, we observed a
reverse trend, in that predictive power was found to be negatively
correlated with both the number of parameters (but the effect was
not significant) and the computation time (significant).When consider-
ing themodel ∗ scale interaction, we observed behaviors (see Fig. 2, bot-
tom right) which, albeit similar, are quite hard to interpret in their
differences. The factor subject had little influence (see Fig. 2, middle
right, bottom left and center) on the predictive power. Overall, despite
these effects, the predictive values that were reached remained in a lim-
ited range (0.2–0.3, for 160 regions) with a rather small upper bound.
From these results, we conclude that all the models mostly differ in
aspects that have relatively limited impact on their predictive power
for FC over the range of parameters explored.

Fig. 2. Predictive power. Top: Predictive power as a function of model and spatial scale across subjects (means and standard deviations). Middle: Specific contribution of factors ‘scale’,
‘model’ and ‘subject’. Bottom: Interactions between factors.

Fig. 3. Graph theoretic comparison of FC patterns: global analysis. (A) 12,720 × 189 matrix of FC patterns corresponding to the lowest spatial scale (160 regions). (B) Matrices of partial
correlation between FC patterns (from low to high spatial scale, left to right. (C) Associated backbone layouts using a force-directed algorithm (Kamada and Kawai, 1989) for partial
correlation matrices thresholded at a sparse density of 2%. (D) Graph-theoretical characteristics (degree, efficiency and betweenness centrality). Black codes for empirical FC.
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The core model of SAR

In our graph-theoretic analysis, the SARmodel was characterized by
a large within model similarity, as well as a relatively large similarity
with FC generated by other models for the same subject. This is to be
contrasted with other models, which mostly exhibited similar patterns
withinmodel. Quantitatively, this translated into large values of central-
ity, such as degree, efficiency and betweenness centrality. The centrality
of the SAR in the graph suggests thatmodels' predictive power is related
to properties that are emphasized in the SAR. Since the SAR is essentially
a linear process, its centrality suggests that the predictive power of
other models is mainly explained by their linear component.

Structural connectivity estimation

Of course, data quality has a key influence on the performance of the
models with respect to empirical FC. In particular, current measures of
DWI-based tractography have well-known limitations. For in-
stance, it is known that tractography tends to under-estimate the
presence of interhemispheric fibers, notably between homologous
regions. We previously reported on this issue with the same data
and it was shown that manipulating interhemispheric connectivity
had a strong influence on predictive power (Messé et al., 2014).
Based on this previous experience, though, we expect an increase
in SC estimation to mostly lead to an increase in the global level

of predictive power without modifying the behavior of models
relative to one another.

Beyond FC: the heuristic value of computational models

The validation of computational models in predicting brain sponta-
neous activity, or resting-state, strongly depends on the features of
the signal that we are interested in. Here, we focused on how models
can be used to relate structural connectivity and functional connectivity
in MRI. In this particular case, which is of high interest in multimodal
MRI, a classical approach is to compare the simulated and empirical
patterns of FC, e.g., using correlation (Honey et al., 2009). Such an ap-
proach should be considered as the first step of a complete investigation
of the heuristic value of simulationmodels (Cabral et al., 2014), including
their capacity to reproduce the dynamical properties of FC (Chang and
Glover, 2010; Handwerker et al., 2012; Smith et al., 2012; Hutchison
et al., 2013; Allen et al., 2014), to identify resting state networks
(Beckmann and Smith, 2005; Damoiseaux et al., 2006), or even to repro-
duce properties observed at finer temporal scales with electro- and
magnetoencephalography (Mantini et al., 2007; Brookes et al., 2011;
Hipp et al., 2012), see, e.g. Messé et al. (2014) about the first two aspects.

Conclusion

We conclude that the computational models we compared, which
display oscillatory behaviors and dynamics that can be quite different,

Fig. 4. Graph-theoretic comparison of FC patterns: individual analyses. Characteristics across subjects and spatial scales. From top to bottom: degree, efficiency, betweenness centrality,
shortest path length to empirical FC, and proportion of shortest paths to empirical FCs passing through a givenmodel. Color codemodels as in Fig. 2 and black color codes for empirical FC.
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neverthelessmostly differ in aspects that have little impact on their over-
all predictive power for FC, over the range of parameters explored. As
reflected in our graph analysis, beyond their basic differences, their ability
to predict FC from SC appears to mostly reduce to a simple core (station-
ary) linear process that is explicitly embodied by the SAR model. This,
alongwith themodels' limited predictive powerwith respect to empirical
FC, demonstrates the limited value of such modeling approaches in their
current form for predicting observed functional connectivity.

Supplementary data to this article can be found online at http://dx.
doi.org/10.1016/j.neuroimage.2015.02.001.
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Appendix A. Description of generative models

The SAR model consists of expressing the BOLD signal y = (yi) as a
linear combination of the fluctuations within other regions (Tononi
et al., 1994; Messé et al., 2014, 2015)

yi ¼ k
X

j≠i

Di jy j þ σνi: ðA:1Þ

In this notation, k is a parameter of spatial autoregression, σ is the
noise level, and ν = (νi) stands for uncorrelated white Gaussian noise

with zero mean and unit variance. The relative values of k and σ quan-
tify the balance between the part of signal that can be accounted for by
the activity of other regions and the structural properties of the network
(∑j ≠ iDijyj) and the part of the signal that can be interpreted as being
endogenous to region i (νi). y is further assumed to bemultivariate nor-
mal with zero mean and covariance matrix that can be calculated from
Eq. (A.1) as

σ2 I−kDð Þ−1 I−kDð Þ−t
; ðA:2Þ

where I stands for the identitymatrix and “t” is the regularmatrix trans-
position. In the simulations, σ was set to one. While noise level scales
overall covariance level, it does not affect the resulting functional
connectivity.

Wilson–Cowan model explores large ensembles of excitatory (E) and
inhibitory (I) neurons using amean-field approach (Wilson and Cowan,
1972; Deco et al., 2009). The dynamics is governed by the following
equations:

τE
∂Ei tð Þ
∂t ¼ −Ei tð Þ þ ϕ Ib þ k

X

j

Di jE j t−τi j
! "

−Ii tð Þ

0

@

1

Aþ σνi

τI
∂Ii tð Þ
∂t ¼ −Ii tð Þ þ ϕ ωIEi tð Þð Þ þ σνi;

withDii=ω+/k, andwhere τE and τI correspond to the time constant (or
scale) of the excitatory and inhibitory population, respectively. ωI is the
action level of the excitatory population on the inhibitory population,
ω+ is the self-retroaction of excitatory population. Ib is a diffuse spontane-
ous background input. τij is the propagation delay between regions i and j,
based on the average fiber tract length between regions scaled by axonal
velocity, v, i.e. τij = Lij/v. ν is a random fluctuating input accounting for
sources of biophysical variability and was defined as in the SAR model.
The transfer functionϕ accounts for the saturation offiring rates in neuro-
nal populations and ismodeled by a sigmoid:ϕ xð Þ ¼ c

1−e−a x−bð Þ. Parameters
were set to (Messé et al., 2014): τI = τE = 20 ms; ωI = 0.5; ω+ = 0.5;
v= 10 m/s; Ib = 0; σ= 0.25; a= 5; b= 0; and c= 2.

The Rate fluctuations model is a simplification of the Wilson–Cowan
system (Galán, 2008; Cabral et al., 2012), where inhibitory populations
and saturation function ϕ were removed.

τ
∂ui tð Þ
∂t ¼ −ui tð Þ þ k

X

j≠i

Di ju j t−τi j
! "

þ σνi

Here: τ=20ms; v=10m/s; and σ=0.25 as in Cabral et al. (2012).
The Kuramoto model is composed of a set of coupled oscillators

Yeung and Strogatz (1999), Cabral et al. (2011). The model equation
reads:

∂ϕi tð Þ
∂t ¼ 2π f i þ k

X

j≠i

Di jsin ϕ j t−τi j
! "

−ϕi tð Þ
! "

þ σνi;

where θi and fi stand for the phase and intrinsic frequency of region i.
Parameter values were taken from Cabral et al. (2011): fi = 60 Hz;
v = 10 m/s; and σ = 1.25 rd.

Fitzhugh–Nagumo model is composed of two nested variables
Stefanescu and Jirsa (2008), Ghosh et al. (2008):

τx
∂xi tð Þ
∂t ¼ γxi tð Þ− x3i tð Þ

3
−yi tð Þ þ k

X

j≠i

Di jx j t−τi j
! "

þ σνi

τy
∂yi tð Þ
∂t ¼ −βyi tð Þ þ xi tð Þ þ α þ σνi;

where τx = 20 ms; τy = 100 ms; v = 10 m/s; σ = 0.25; α = 0.8; β =
0.6; and γ = 1 as in Messé et al. (2014).
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Fig. 5. Power spectrum. Averaged power spectrums across regions and runs of the neuronal
activity, from one typical subject and for the different computational models (Fast Fourier
Transform was used along with the Welch method). Color code models as in Fig. 2.
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The Neural-mass model is a nonlinear biophysical model of neuronal
dynamics relying on the Hodgkin–Huxley model (Breakspear et al.,
2003; Honey et al., 2009). The main dynamical variables are the mean
membrane potential of excitatory and inhibitory populations (V and Z,
respectively), which are governed by the conductance of sodium, potas-
sium and calcium ions, and the passive conductance of leaky ions, gion.
The total current flow across pyramidal cell membranes is given by:

∂Vi tð Þ
∂t ¼ −mCaðgCa þ rNMDAaeek

X

j

Di jQV j
Þ Vi tð Þ−VCað Þ

−ðgNamNa þ aeek
X

j

Di jQV j
Þ Vi tð Þ−VNað Þ

−gKW Vi tð Þ−VKð Þ−gL Vi tð Þ−VLð Þ

þaieZQZi þ aneIδ
∂Zi tð Þ
∂t ¼ b aiiViQVi

þ aniIδ
! "

;

with Dii = (1–k)/k, and wheremion and Vion are the fraction of open ion
channels and the Nernst potential for that ion species, respectively. For
large ion channel population, the fraction of open ion channels is given
by the sigmoid-shaped neural activation function,

mion ¼ 1
2

1þ tanh
V−Tion

δion

# $# $
;

except for the potassium channels that decay exponentially,

∂W
∂t ¼ ϕ mK−Wð Þ

τ
:

QV andQZ represent the average firing-rates of excitatory and inhibitory
neurons,

QX ¼
QXmax

2
1þ tanh

X−XT

δX

# $# $
:

Iδ corresponds to nonspecific subcortical excitation. axy scales the
x-to-y synaptic strength and rNMDA corresponds to the number of
NMDA receptors. Parameters are set to values taken from Honey et al.
(2009).

The Spiking neurons model models each region as a biophysically
realistic attractor consisting of mutually interconnected populations of
excitatory pyramidal neurons and inhibitory neurons (Deco and Jirsa,
2012). This type of attractor network of spiking neurons is a dynamical
system with an intrinsic tendency to settle in stationary states, also
called attractors, typically characterized by a stable pattern of firing ac-
tivity. Small perturbations may induce transitions between different
stable attractors. Mean-field approximation yields a set of nonlinear
equations of average firing rates of each population. For full details on
the model definition and parameters, see Deco and Jirsa (2012).
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