Plasticity of Th17 Cells in Autoimmune Kidney Diseases
Standard
Plasticity of Th17 Cells in Autoimmune Kidney Diseases. / Krebs, Christian F; Turner, Jan-Eric; Paust, Hans-Joachim; Kapffer, Sonja; Koyro, Tobias; Krohn, Sonja; Ufer, Friederike; Friese, Manuel A; Flavell, Richard A; Stockinger, Brigitta; Steinmetz, Oliver M; Stahl, Rolf A K; Huber, Samuel; Panzer, Ulf.
in: J IMMUNOL, Jahrgang 197, Nr. 2, 15.07.2016, S. 449-57.Publikationen: SCORING: Beitrag in Fachzeitschrift/Zeitung › SCORING: Zeitschriftenaufsatz › Forschung › Begutachtung
Harvard
APA
Vancouver
Bibtex
}
RIS
TY - JOUR
T1 - Plasticity of Th17 Cells in Autoimmune Kidney Diseases
AU - Krebs, Christian F
AU - Turner, Jan-Eric
AU - Paust, Hans-Joachim
AU - Kapffer, Sonja
AU - Koyro, Tobias
AU - Krohn, Sonja
AU - Ufer, Friederike
AU - Friese, Manuel A
AU - Flavell, Richard A
AU - Stockinger, Brigitta
AU - Steinmetz, Oliver M
AU - Stahl, Rolf A K
AU - Huber, Samuel
AU - Panzer, Ulf
N1 - Copyright © 2016 by The American Association of Immunologists, Inc.
PY - 2016/7/15
Y1 - 2016/7/15
N2 - The ability of CD4(+) T cells to differentiate into pathogenic Th1 and Th17 or protective T regulatory cells plays a pivotal role in the pathogenesis of autoimmune diseases. Recent data suggest that CD4(+) T cell subsets display a considerable plasticity. This plasticity seems to be a critical factor for their pathogenicity, but also for the potential transition of pathogenic effector T cells toward a more tolerogenic phenotype. The aim of the current study was to analyze the plasticity of Th17 cells in a mouse model of acute crescentic glomerulonephritis and in a mouse chronic model of lupus nephritis. By transferring in vitro generated, highly purified Th17 cells and by using IL-17A fate reporter mice, we demonstrate that Th17 cells fail to acquire substantial expression of the Th1 and Th2 signature cytokines IFN-γ and IL-13, respectively, or the T regulatory transcription factor Foxp3 throughout the course of renal inflammation. In an attempt to therapeutically break the stability of the Th17 phenotype in acute glomerulonephritis, we subjected nephritic mice to CD3-specific Ab treatment. Indeed, this treatment induced an immunoregulatory phenotype in Th17 cells, which was marked by high expression of IL-10 and attenuated renal tissue damage in acute glomerulonephritis. In summary, we show that Th17 cells display a minimum of plasticity in acute and chronic experimental glomerulonephritis and introduce anti-CD3 treatment as a tool to induce a regulatory phenotype in Th17 cells in the kidney that may be therapeutically exploited.
AB - The ability of CD4(+) T cells to differentiate into pathogenic Th1 and Th17 or protective T regulatory cells plays a pivotal role in the pathogenesis of autoimmune diseases. Recent data suggest that CD4(+) T cell subsets display a considerable plasticity. This plasticity seems to be a critical factor for their pathogenicity, but also for the potential transition of pathogenic effector T cells toward a more tolerogenic phenotype. The aim of the current study was to analyze the plasticity of Th17 cells in a mouse model of acute crescentic glomerulonephritis and in a mouse chronic model of lupus nephritis. By transferring in vitro generated, highly purified Th17 cells and by using IL-17A fate reporter mice, we demonstrate that Th17 cells fail to acquire substantial expression of the Th1 and Th2 signature cytokines IFN-γ and IL-13, respectively, or the T regulatory transcription factor Foxp3 throughout the course of renal inflammation. In an attempt to therapeutically break the stability of the Th17 phenotype in acute glomerulonephritis, we subjected nephritic mice to CD3-specific Ab treatment. Indeed, this treatment induced an immunoregulatory phenotype in Th17 cells, which was marked by high expression of IL-10 and attenuated renal tissue damage in acute glomerulonephritis. In summary, we show that Th17 cells display a minimum of plasticity in acute and chronic experimental glomerulonephritis and introduce anti-CD3 treatment as a tool to induce a regulatory phenotype in Th17 cells in the kidney that may be therapeutically exploited.
KW - Journal Article
U2 - 10.4049/jimmunol.1501831
DO - 10.4049/jimmunol.1501831
M3 - SCORING: Journal article
C2 - 27271566
VL - 197
SP - 449
EP - 457
JO - J IMMUNOL
JF - J IMMUNOL
SN - 0022-1767
IS - 2
ER -