Non-invasive measurement of pulse pressure variation using a finger-cuff method (CNAP system): a validation study in patients having neurosurgery

Standard

Non-invasive measurement of pulse pressure variation using a finger-cuff method (CNAP system): a validation study in patients having neurosurgery. / Flick, Moritz; Hoppe, Phillip; Matin Mehr, Jasmin; Briesenick, Luisa; Kouz, Karim; Greiwe, Gillis; Fortin, Jürgen; Saugel, Bernd.

in: J CLIN MONIT COMPUT, Jahrgang 36, Nr. 2, 04.2022, S. 429-436.

Publikationen: SCORING: Beitrag in Fachzeitschrift/ZeitungSCORING: ZeitschriftenaufsatzForschungBegutachtung

Harvard

APA

Vancouver

Bibtex

@article{6559af28a327401cb1703edce4b8987d,
title = "Non-invasive measurement of pulse pressure variation using a finger-cuff method (CNAP system): a validation study in patients having neurosurgery",
abstract = "The finger-cuff system CNAP (CNSystems Medizintechnik, Graz, Austria) allows non-invasive automated measurement of pulse pressure variation (PPVCNAP). We sought to validate the PPVCNAP-algorithm and investigate the agreement between PPVCNAP and arterial catheter-derived manually calculated pulse pressure variation (PPVINV). This was a prospective method comparison study in patients having neurosurgery. PPVINV was the reference method. We applied the PPVCNAP-algorithm to arterial catheter-derived blood pressure waveforms (PPVINV-CNAP) and to CNAP finger-cuff-derived blood pressure waveforms (PPVCNAP). To validate the PPVCNAP-algorithm, we compared PPVINV-CNAP to PPVINV. To investigate the clinical performance of PPVCNAP, we compared PPVCNAP to PPVINV. We used Bland-Altman analysis (absolute agreement), Deming regression, concordance, and Cohen's kappa (predictive agreement for three pulse pressure variation categories). We analyzed 360 measurements from 36 patients. The mean of the differences between PPVINV-CNAP and PPVINV was -0.1% (95% limits of agreement (95%-LoA) -2.5 to 2.3%). Deming regression showed a slope of 0.99 (95% confidence interval (95%-CI) 0.91 to 1.06) and intercept of -0.02 (95%-CI -0.52 to 0.47). The predictive agreement between PPVINV-CNAP and PPVINV was 92% and Cohen's kappa was 0.79. The mean of the differences between PPVCNAP and PPVINV was -1.0% (95%-LoA-6.3 to 4.3%). Deming regression showed a slope of 0.85 (95%-CI 0.78 to 0.91) and intercept of 0.10 (95%-CI -0.34 to 0.55). The predictive agreement between PPVCNAP and PPVINV was 82% and Cohen's kappa was 0.48. The PPVCNAP-algorithm reliably calculates pulse pressure variation compared to manual offline pulse pressure variation calculation when applied on the same arterial blood pressure waveform. The absolute and predictive agreement between PPVCNAP and PPVINV are moderate.",
author = "Moritz Flick and Phillip Hoppe and {Matin Mehr}, Jasmin and Luisa Briesenick and Karim Kouz and Gillis Greiwe and J{\"u}rgen Fortin and Bernd Saugel",
year = "2022",
month = apr,
doi = "10.1007/s10877-021-00669-1",
language = "English",
volume = "36",
pages = "429--436",
journal = "J CLIN MONIT COMPUT",
issn = "1387-1307",
publisher = "Springer Netherlands",
number = "2",

}

RIS

TY - JOUR

T1 - Non-invasive measurement of pulse pressure variation using a finger-cuff method (CNAP system): a validation study in patients having neurosurgery

AU - Flick, Moritz

AU - Hoppe, Phillip

AU - Matin Mehr, Jasmin

AU - Briesenick, Luisa

AU - Kouz, Karim

AU - Greiwe, Gillis

AU - Fortin, Jürgen

AU - Saugel, Bernd

PY - 2022/4

Y1 - 2022/4

N2 - The finger-cuff system CNAP (CNSystems Medizintechnik, Graz, Austria) allows non-invasive automated measurement of pulse pressure variation (PPVCNAP). We sought to validate the PPVCNAP-algorithm and investigate the agreement between PPVCNAP and arterial catheter-derived manually calculated pulse pressure variation (PPVINV). This was a prospective method comparison study in patients having neurosurgery. PPVINV was the reference method. We applied the PPVCNAP-algorithm to arterial catheter-derived blood pressure waveforms (PPVINV-CNAP) and to CNAP finger-cuff-derived blood pressure waveforms (PPVCNAP). To validate the PPVCNAP-algorithm, we compared PPVINV-CNAP to PPVINV. To investigate the clinical performance of PPVCNAP, we compared PPVCNAP to PPVINV. We used Bland-Altman analysis (absolute agreement), Deming regression, concordance, and Cohen's kappa (predictive agreement for three pulse pressure variation categories). We analyzed 360 measurements from 36 patients. The mean of the differences between PPVINV-CNAP and PPVINV was -0.1% (95% limits of agreement (95%-LoA) -2.5 to 2.3%). Deming regression showed a slope of 0.99 (95% confidence interval (95%-CI) 0.91 to 1.06) and intercept of -0.02 (95%-CI -0.52 to 0.47). The predictive agreement between PPVINV-CNAP and PPVINV was 92% and Cohen's kappa was 0.79. The mean of the differences between PPVCNAP and PPVINV was -1.0% (95%-LoA-6.3 to 4.3%). Deming regression showed a slope of 0.85 (95%-CI 0.78 to 0.91) and intercept of 0.10 (95%-CI -0.34 to 0.55). The predictive agreement between PPVCNAP and PPVINV was 82% and Cohen's kappa was 0.48. The PPVCNAP-algorithm reliably calculates pulse pressure variation compared to manual offline pulse pressure variation calculation when applied on the same arterial blood pressure waveform. The absolute and predictive agreement between PPVCNAP and PPVINV are moderate.

AB - The finger-cuff system CNAP (CNSystems Medizintechnik, Graz, Austria) allows non-invasive automated measurement of pulse pressure variation (PPVCNAP). We sought to validate the PPVCNAP-algorithm and investigate the agreement between PPVCNAP and arterial catheter-derived manually calculated pulse pressure variation (PPVINV). This was a prospective method comparison study in patients having neurosurgery. PPVINV was the reference method. We applied the PPVCNAP-algorithm to arterial catheter-derived blood pressure waveforms (PPVINV-CNAP) and to CNAP finger-cuff-derived blood pressure waveforms (PPVCNAP). To validate the PPVCNAP-algorithm, we compared PPVINV-CNAP to PPVINV. To investigate the clinical performance of PPVCNAP, we compared PPVCNAP to PPVINV. We used Bland-Altman analysis (absolute agreement), Deming regression, concordance, and Cohen's kappa (predictive agreement for three pulse pressure variation categories). We analyzed 360 measurements from 36 patients. The mean of the differences between PPVINV-CNAP and PPVINV was -0.1% (95% limits of agreement (95%-LoA) -2.5 to 2.3%). Deming regression showed a slope of 0.99 (95% confidence interval (95%-CI) 0.91 to 1.06) and intercept of -0.02 (95%-CI -0.52 to 0.47). The predictive agreement between PPVINV-CNAP and PPVINV was 92% and Cohen's kappa was 0.79. The mean of the differences between PPVCNAP and PPVINV was -1.0% (95%-LoA-6.3 to 4.3%). Deming regression showed a slope of 0.85 (95%-CI 0.78 to 0.91) and intercept of 0.10 (95%-CI -0.34 to 0.55). The predictive agreement between PPVCNAP and PPVINV was 82% and Cohen's kappa was 0.48. The PPVCNAP-algorithm reliably calculates pulse pressure variation compared to manual offline pulse pressure variation calculation when applied on the same arterial blood pressure waveform. The absolute and predictive agreement between PPVCNAP and PPVINV are moderate.

U2 - 10.1007/s10877-021-00669-1

DO - 10.1007/s10877-021-00669-1

M3 - SCORING: Journal article

C2 - 33630220

VL - 36

SP - 429

EP - 436

JO - J CLIN MONIT COMPUT

JF - J CLIN MONIT COMPUT

SN - 1387-1307

IS - 2

ER -