Acid-sensing ion channel 1 is involved in both axonal injury and demyelination in multiple sclerosis and its animal model.

Standard

Acid-sensing ion channel 1 is involved in both axonal injury and demyelination in multiple sclerosis and its animal model. / Vergo, Sandra; Craner, Matthew J; Etzensperger, Ruth; Attfield, Kathrine; Friese, Manuel A.; Newcombe, Jia; Esiri, Margaret; Fugger, Lars.

in: BRAIN, Jahrgang 134, Nr. 2, 2, 2011, S. 571-584.

Publikationen: SCORING: Beitrag in Fachzeitschrift/ZeitungSCORING: ZeitschriftenaufsatzForschungBegutachtung

Harvard

Vergo, S, Craner, MJ, Etzensperger, R, Attfield, K, Friese, MA, Newcombe, J, Esiri, M & Fugger, L 2011, 'Acid-sensing ion channel 1 is involved in both axonal injury and demyelination in multiple sclerosis and its animal model.', BRAIN, Jg. 134, Nr. 2, 2, S. 571-584. <http://www.ncbi.nlm.nih.gov/pubmed/21233144?dopt=Citation>

APA

Vancouver

Vergo S, Craner MJ, Etzensperger R, Attfield K, Friese MA, Newcombe J et al. Acid-sensing ion channel 1 is involved in both axonal injury and demyelination in multiple sclerosis and its animal model. BRAIN. 2011;134(2):571-584. 2.

Bibtex

@article{ceb887b6816f4c70ac6ba07a02bfcc44,
title = "Acid-sensing ion channel 1 is involved in both axonal injury and demyelination in multiple sclerosis and its animal model.",
abstract = "Although there is growing evidence for a role of excess intracellular cations, particularly calcium ions, in neuronal and glial cell injury in multiple sclerosis, as well as in non-inflammatory neurological conditions, the molecular mechanisms involved are not fully determined. We previously showed that the acid-sensing ion channel 1 which, when activated under the acidotic tissue conditions found in inflammatory lesions opens to allow influx of sodium and calcium ions, contributes to axonal injury in experimental autoimmune encephalomyelitis, an animal model of multiple sclerosis. However, the extent and cellular distribution of acid-sensing ion channel 1 expression in neurons and glia in inflammatory lesions is unknown and, crucially, acid-sensing ion channel 1 expression has not been determined in multiple sclerosis lesions. Here we studied acute and chronic experimental autoimmune encephalomyelitis and multiple sclerosis spinal cord and optic nerve tissues to describe in detail the distribution of acid-sensing ion channel 1 and its relationship with neuronal and glial damage. We also tested the effects of amiloride treatment on tissue damage in the mouse models. We found that acid-sensing ion channel 1 was upregulated in axons and oligodendrocytes within lesions from mice with acute experimental autoimmune encephalomyelitis and from patients with active multiple sclerosis. The expression of acid-sensing ion channel 1 was associated with axonal damage as indicated by co-localization with the axonal injury marker beta amyloid precursor protein. Moreover, blocking acid-sensing ion channel 1 with amiloride protected both myelin and neurons from damage in the acute model, and when given either at disease onset or, more clinically relevant, at first relapse, ameliorated disability in mice with chronic-relapsing experimental autoimmune encephalomyelitis. Together these findings suggest that blockade of acid-sensing ion channel 1 has the potential to provide both neuro- and myelo-protective benefits in multiple sclerosis.",
author = "Sandra Vergo and Craner, {Matthew J} and Ruth Etzensperger and Kathrine Attfield and Friese, {Manuel A.} and Jia Newcombe and Margaret Esiri and Lars Fugger",
year = "2011",
language = "Deutsch",
volume = "134",
pages = "571--584",
journal = "BRAIN",
issn = "0006-8950",
publisher = "Oxford University Press",
number = "2",

}

RIS

TY - JOUR

T1 - Acid-sensing ion channel 1 is involved in both axonal injury and demyelination in multiple sclerosis and its animal model.

AU - Vergo, Sandra

AU - Craner, Matthew J

AU - Etzensperger, Ruth

AU - Attfield, Kathrine

AU - Friese, Manuel A.

AU - Newcombe, Jia

AU - Esiri, Margaret

AU - Fugger, Lars

PY - 2011

Y1 - 2011

N2 - Although there is growing evidence for a role of excess intracellular cations, particularly calcium ions, in neuronal and glial cell injury in multiple sclerosis, as well as in non-inflammatory neurological conditions, the molecular mechanisms involved are not fully determined. We previously showed that the acid-sensing ion channel 1 which, when activated under the acidotic tissue conditions found in inflammatory lesions opens to allow influx of sodium and calcium ions, contributes to axonal injury in experimental autoimmune encephalomyelitis, an animal model of multiple sclerosis. However, the extent and cellular distribution of acid-sensing ion channel 1 expression in neurons and glia in inflammatory lesions is unknown and, crucially, acid-sensing ion channel 1 expression has not been determined in multiple sclerosis lesions. Here we studied acute and chronic experimental autoimmune encephalomyelitis and multiple sclerosis spinal cord and optic nerve tissues to describe in detail the distribution of acid-sensing ion channel 1 and its relationship with neuronal and glial damage. We also tested the effects of amiloride treatment on tissue damage in the mouse models. We found that acid-sensing ion channel 1 was upregulated in axons and oligodendrocytes within lesions from mice with acute experimental autoimmune encephalomyelitis and from patients with active multiple sclerosis. The expression of acid-sensing ion channel 1 was associated with axonal damage as indicated by co-localization with the axonal injury marker beta amyloid precursor protein. Moreover, blocking acid-sensing ion channel 1 with amiloride protected both myelin and neurons from damage in the acute model, and when given either at disease onset or, more clinically relevant, at first relapse, ameliorated disability in mice with chronic-relapsing experimental autoimmune encephalomyelitis. Together these findings suggest that blockade of acid-sensing ion channel 1 has the potential to provide both neuro- and myelo-protective benefits in multiple sclerosis.

AB - Although there is growing evidence for a role of excess intracellular cations, particularly calcium ions, in neuronal and glial cell injury in multiple sclerosis, as well as in non-inflammatory neurological conditions, the molecular mechanisms involved are not fully determined. We previously showed that the acid-sensing ion channel 1 which, when activated under the acidotic tissue conditions found in inflammatory lesions opens to allow influx of sodium and calcium ions, contributes to axonal injury in experimental autoimmune encephalomyelitis, an animal model of multiple sclerosis. However, the extent and cellular distribution of acid-sensing ion channel 1 expression in neurons and glia in inflammatory lesions is unknown and, crucially, acid-sensing ion channel 1 expression has not been determined in multiple sclerosis lesions. Here we studied acute and chronic experimental autoimmune encephalomyelitis and multiple sclerosis spinal cord and optic nerve tissues to describe in detail the distribution of acid-sensing ion channel 1 and its relationship with neuronal and glial damage. We also tested the effects of amiloride treatment on tissue damage in the mouse models. We found that acid-sensing ion channel 1 was upregulated in axons and oligodendrocytes within lesions from mice with acute experimental autoimmune encephalomyelitis and from patients with active multiple sclerosis. The expression of acid-sensing ion channel 1 was associated with axonal damage as indicated by co-localization with the axonal injury marker beta amyloid precursor protein. Moreover, blocking acid-sensing ion channel 1 with amiloride protected both myelin and neurons from damage in the acute model, and when given either at disease onset or, more clinically relevant, at first relapse, ameliorated disability in mice with chronic-relapsing experimental autoimmune encephalomyelitis. Together these findings suggest that blockade of acid-sensing ion channel 1 has the potential to provide both neuro- and myelo-protective benefits in multiple sclerosis.

M3 - SCORING: Zeitschriftenaufsatz

VL - 134

SP - 571

EP - 584

JO - BRAIN

JF - BRAIN

SN - 0006-8950

IS - 2

M1 - 2

ER -